Quantitative interpretation using facies-based seismic inversion

2017 ◽  
Vol 5 (3) ◽  
pp. SL1-SL8 ◽  
Author(s):  
Ehsan Zabihi Naeini ◽  
Russell Exley

Quantitative interpretation (QI) is an important part of successful exploration, appraisal, and development activities. Seismic amplitude variation with offset (AVO) provides the primary signal for the vast majority of QI studies allowing the determination of elastic properties from which facies can be determined. Unfortunately, many established AVO-based seismic inversion algorithms are hindered by not fully accounting for inherent subsurface facies variations and also by requiring the addition of a preconceived low-frequency model to supplement the limited bandwidth of the input seismic. We apply a novel joint impedance and facies inversion applied to a North Sea prospect using broadband seismic data. The focus was to demonstrate the significant advantages of inverting for each facies individually and iteratively determine an optimized low-frequency model from facies-derived depth trends. The results generated several scenarios for potential facies distributions thereby providing guidance to future appraisal and development decisions.

2017 ◽  
Vol 25 (03) ◽  
pp. 1750022
Author(s):  
Xiuwei Yang ◽  
Peimin Zhu

Acoustic impedance (AI) from seismic inversion can indicate rock properties and can be used, when combined with rock physics, to predict reservoir parameters, such as porosity. Solutions to seismic inversion problem are almost nonunique due to the limited bandwidth of seismic data. Additional constraints from well log data and geology are needed to arrive at a reasonable solution. In this paper, sedimentary facies is used to reduce the uncertainty in inversion and rock physics modeling; the results not only agree with seismic data, but also conform to geology. A reservoir prediction method, which incorporates seismic data, well logs, rock physics and sedimentary facies, is proposed. AI was first derived by constrained sparse spike inversion (CSSI) using a sedimentary facies dependent low-frequency model, and then was transformed to reservoir parameters by sequential simulation, statistical rock physics and [Formula: see text]-model. Two numerical experiments using synthetic model and real data indicated that the sedimentary facies information may help to obtain a more reasonable prediction.


2017 ◽  
Vol 5 (4) ◽  
pp. T523-T530
Author(s):  
Ehsan Zabihi Naeini ◽  
Mark Sams

Broadband reprocessed seismic data from the North West Shelf of Australia were inverted using wavelets estimated with a conventional approach. The inversion method applied was a facies-based inversion, in which the low-frequency model is a product of the inversion process itself, constrained by facies-dependent input trends, the resultant facies distribution, and the match to the seismic. The results identified the presence of a gas reservoir that had recently been confirmed through drilling. The reservoir is thin, with up to 15 ms of maximum thickness. The bandwidth of the seismic data is approximately 5–70 Hz, and the well data used to extract the wavelet used in the inversion are only 400 ms long. As such, there was little control on the lowest frequencies of the wavelet. Different wavelets were subsequently estimated using a variety of new techniques that attempt to address the limitations of short well-log segments and low-frequency seismic. The revised inversion showed greater gas-sand continuity and an extension of the reservoir at one flank. Noise-free synthetic examples indicate that thin-bed delineation can depend on the accuracy of the low-frequency content of the wavelets used for inversion. Underestimation of the low-frequency contents can result in missing thin beds, whereas underestimation of high frequencies can introduce false thin beds. Therefore, it is very important to correctly capture the full frequency content of the seismic data in terms of the amplitude and phase spectra of the estimated wavelets, which subsequently leads to a more accurate thin-bed reservoir characterization through inversion.


2013 ◽  
Vol 1 (2) ◽  
pp. T167-T176 ◽  
Author(s):  
Brian P. Wallick ◽  
Luis Giroldi

Interpretation of conventional land seismic data over a Permian-age gas field in Eastern Saudi Arabia has proven difficult over time due to low signal-to-noise ratio and limited bandwidth in the seismic volume. In an effort to improve the signal and broaden the bandwidth, newly acquired seismic data over this field have employed point receiver technology, dense wavefield sampling, a full azimuth geometry, and a specially designed sweep with useful frequencies as low as three hertz. The resulting data display enhanced reflection continuity and improved resolution. With the extension of low frequencies and improved interpretability, acoustic impedance inversion results are more robust and allow greater flexibility in reservoir characterization and prediction. In addition, because inversion to acoustic impedance is no longer completely tied to a wells-only low-frequency model, there are positive implications for exploration.


2019 ◽  
Vol 7 (3) ◽  
pp. T581-T593 ◽  
Author(s):  
Mark Sams ◽  
Annushia Annamalai ◽  
Jeremy Gallop

Vertical transverse isotropy (VTI) will affect seismic inversion, but it is not possible to solve for the full set of anisotropic elastic parameters from amplitude variation with offset inversion because there exists an isotropic solution to every VTI problem. We can easily approximate the pseudoisotropic properties that result from the isotropic solution to the anisotropic problem for well-log data. We can then use these well-log properties to provide a low-frequency model for inversion and/or a framework for interpreting either absolute or relative inversion results. This, however, requires prior knowledge of the anisotropic properties, which are often unavailable or poorly constrained. If we ignore anisotropy and assume that the amplitude variations caused by VTI are going to be accounted for by effective wavelets, the inversion results would be in error: The impact of anisotropy is not merely a case of linear scaling of seismic amplitudes for any particular angle range. Ignoring VTI does not affect the prediction of acoustic impedance, but it does affect predictions of [Formula: see text] and density. For realistic values of anisotropy, these errors can be significant, such as predicting oil instead of brine. If the anisotropy of the rocks is known, then we can invert for the true vertical elastic properties using the known anisotropy coefficients through a facies-based inversion. This can produce a more accurate result than solving for pseudoelastic properties, and it can take advantage of the sometimes increased separation of isotropic and anisotropic rocks in the pseudoisotropic elastic domain. Because the effect of anisotropy will vary depending on the strength of the anisotropy and the distribution of the rocks, we strongly recommend forward modeling for each case prior to inversion to understand the potential impact on the study objectives.


2014 ◽  
Vol 2 (4) ◽  
pp. SP45-SP59
Author(s):  
Mathieu J. Duchesne ◽  
Bernard Giroux ◽  
Kezhen Hu

The evaluation of drilling prospects is frequently based on seismic amplitude anomalies. To decipher “true” seismic prospects from “false” ones, we used poroviscoelastic (PVE) models, as opposed to other formalisms such as acoustic, elastic, viscoelastic, and poroelastic models, that provided a solution that takes into account solid and fluid attenuation mechanisms separately to model the earth’s response to the propagation of a seismic wavefield. Here, a PVE impedance modeling scheme was tested using seismic and well-log data collected on a conventional gas reservoir in the Canadian Arctic. Comparisons between seismic-to-well ties achieved using acoustic and PVE media indicated that the latter provided more realistic synthetic seismograms. Although prestack analysis revealed that the present lithological context was of class I amplitude variation with offset (AVO), the seismic signature observed was of class III AVO. Consequently, the increase in amplitude with offset was interpreted to be induced not by a lithological change (i.e., shale to sand) combined with a gas-charged interval, but rather by an increase in porosity within the sandstone reservoir itself where the gas has accumulated. Frequency variation with offset analysis using spectral decomposition, image low-frequency shadows on the far offsets attributed to the gas accumulation that were correlative with the AVO anomaly. This highlighted the importance of far offsets in anomalous amplitude and frequency events attributed to the occurrence of gas reservoirs observed on stacked data and that these events can be missed if seismic hydrocarbon indicators were solely investigated on stacked data. Finally, the method of analysis emphasized the importance of combining indirect arguments coming from the observation of prestack and stacked seismic data in the time and frequency domains for reducing risk to an acceptable level before a prospect can be drilled.


Geophysics ◽  
2011 ◽  
Vol 76 (5) ◽  
pp. WB53-WB65 ◽  
Author(s):  
Huyen Bui ◽  
Jennifer Graham ◽  
Shantanu Kumar Singh ◽  
Fred Snyder ◽  
Martiris Smith

One of the main goals of seismic inversion is to obtain high-resolution relative and absolute impedance for reservoir properties prediction. We aim to study whether the results from seismic inversion of subsalt data are sufficiently robust for reliable reservoir characterization. Approximately [Formula: see text] of poststack, wide-azimuth, anisotropic (vertical transverse isotropic) wave-equation migration seismic data from 50 Outer Continental Shelf blocks in the Green Canyon area of the Gulf of Mexico were inverted in this study. A total of four subsalt wells and four subsalt seismic interpreted horizons were used in the inversion process, and one of the wells was used for a blind test. Our poststack inversion method used an iterative discrete spike inversion method, based on the combination of space-adaptive wavelet processing to invert for relative acoustic impedance. Next, the dips were estimated from seismic data and converted to a horizon-like layer sequence field that was used as one of the inputs into the low-frequency model. The background model was generated by incorporating the well velocities, seismic velocity, seismic interpreted horizons, and the previously derived layer sequence field in the low-frequency model. Then, the relative acoustic impedance volume was scaled by adding the low-frequency model to match the calculated acoustic impedance logs from the wells for absolute acoustic impedance. Finally, the geological information and rock physics data were incorporated into the reservoir properties assessment for sand/shale prediction in two main target reservoirs in the Miocene and Wilcox formations. Overall, the poststack inversion results and the sand/shale prediction showed good ties at the well locations. This was clearly demonstrated in the blind test well. Hence, incorporating rock physics and geology enables poststack inversion in subsalt areas.


Geophysics ◽  
2008 ◽  
Vol 73 (1) ◽  
pp. E1-E5 ◽  
Author(s):  
Lev Vernik

Seismic reservoir characterization and pore-pressure prediction projects rely heavily on the accuracy and consistency of sonic logs. Sonic data acquisition in wells with large relative dip is known to suffer from anisotropic effects related to microanisotropy of shales and thin-bed laminations of sand, silt, and shale. Nonetheless, if anisotropy parameters can be related to shale content [Formula: see text] in siliciclastic rocks, then I show that it is straightforward to compute the anisotropy correction to both compressional and shear logs using [Formula: see text] and the formation relative dip angle. The resulting rotated P-wave sonic logs can be used to enhance time-depth ties, velocity to effective stress transforms, and low-frequency models necessary for prestack seismic amplitude variation with offset (AVO) inversion.


2021 ◽  
Author(s):  
Siddharth Garia ◽  
Arnab Kumar Pal ◽  
Karangat Ravi ◽  
Archana M Nair

<p>Seismic inversion method is widely used to characterize reservoirs and detect zones of interest, i.e., hydrocarbon-bearing zone in the subsurface by transforming seismic reflection data into quantitative subsurface rock properties. The primary aim of seismic inversion is to transform the 3D seismic section/cube into an acoustic impedance (AI) cube. The integration of this elastic attribute, i.e., AI cube with well log data, can thereafter help to establish correlations between AI and different petrophysical properties. The seismic inversion algorithm interpolates and spatially populates data/parameters of wells to the entire seismic section/cube based on the well log information. The case study presented here uses machine learning-neural network based algorithm to extract the different petrophysical properties such as porosity and bulk density from the seismic data of the Upper Assam basin, India. We analyzed three different stratigraphic  units that are established to be producing zones in this basin.</p><p> AI model is generated from the seismic reflection data with the help of colored inversion operator. Subsequently, low-frequency model is generated from the impedance data extracted from the well log information. To compensate for the band limited nature of the seismic data, this low-frequency model is added to the existing acoustic model. Thereafter, a feed-forward neural network (NN) is trained with AI as input and porosity/bulk density as target, validated with NN generated porosity/bulk density with actual porosity/bulk density from well log data. The trained network is thus tested over the entire region of interest to populate these petrophysical properties.</p><p>Three seismic zones were identified from the seismic section ranging from 681 to 1333 ms, 1528 to 1575 ms and 1771 to 1814 ms. The range of AI, porosity and bulk density were observed to be 1738 to 6000 (g/cc) * (m/s), 26 to 38% and 1.95 to 2.46 g/cc respectively. Studies conducted by researchers in the same basin yielded porosity results in the range of 10-36%. The changes in acoustic impedance, porosity and bulk density may be attributed to the changes in lithology. NN method was prioritized over other traditional statistical methods due to its ability to model any arbitrary dependency (non-linear relationships between input and target values) and also overfitting can be avoided. Hence, the workflow presented here provides an estimation of reservoir properties and is considered useful in predicting petrophysical properties for reservoir characterization, thus helping to estimate reservoir productivity.</p>


Geophysics ◽  
2014 ◽  
Vol 79 (4) ◽  
pp. R151-R163 ◽  
Author(s):  
Javad Rezaie ◽  
Jo Eidsvik ◽  
Tapan Mukerji

Information analysis can be used in the context of reservoir decisions under uncertainty to evaluate whether additional data (e.g., seismic data) are likely to be useful in impacting the decision. Such evaluation of geophysical information sources depends on input modeling assumptions. We studied results for Bayesian inversion and value of information analysis when the input distributions are skewed and non-Gaussian. Reservoir parameters and seismic amplitudes are often skewed and using models that capture the skewness of distributions, the input assumptions are less restrictive and the results are more reliable. We examined the general methodology for value of information analysis using closed skew normal (SN) distributions. As an example, we found a numerical case with porosity and saturation as reservoir variables and computed the value of information for seismic amplitude variation with offset intercept and gradient, all modeled with closed SN distributions. Sensitivity of the value of information analysis to skewness, mean values, accuracy, and correlation parameters is performed. Simulation results showed that fewer degrees of freedom in the reservoir model results in higher value of information, and seismic data are less valuable when seismic measurements are spatially correlated. In our test, the value of information was approximately eight times larger for a spatial-dependent reservoir variable compared with the independent case.


2020 ◽  
Author(s):  
Ding Jicai ◽  
Zhao Xiaolong ◽  
Jiang Xiudi ◽  
Wang Yandong ◽  
Huang Xiaogang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document