Challenges in geophysical mapping of glaciotectonic structures

Geophysics ◽  
2013 ◽  
Vol 78 (5) ◽  
pp. B287-B303 ◽  
Author(s):  
Anne-Sophie Høyer ◽  
Ingelise Møller ◽  
Flemming Jørgensen

Glaciotectonic complexes have been recognized worldwide — traditionally described on the basis of outcrops or geomorphological observations. In the past few decades, geophysics has become an integral part of geologic mapping, which enables the mapping of buried glaciotectonic complexes. The geophysical methods provide different types of information and degrees of resolution and thus, a different ability to resolve the glaciotectonic structures. We evaluated these abilities on the basis of an integrated application of four commonly used geophysical methods: airborne transient electromagnetics, high-resolution reflection seismic, geoelectrical, and ground-penetrating radar (GPR). We covered an area of [Formula: see text] in a formerly glaciated region in the western part of Denmark. The geologic setting was highly heterogeneous with glaciotectonic deformation observed in the form of large-scale structures in the seismic and airborne transient electromagnetic data to small-scale structures seen in the GPR and geoelectrical data. The seismic and GPR data provided detailed structural information, whereas the geoelectrical and electromagnetic data provided indirect lithological information through resistivities. A combination of methods with a wide span in resolution capabilities can therefore be recommendable to characterize and understand the geologic setting. The sequence of application of the different methods is primarily determined by the gross expenditure required for acquisition and processing, e.g., per kilometer of the surveys. Our experience suggested that airborne electromagnetic data should be acquired initially to obtain a 3D impression of the geologic setting. Based on these data, areas can be selected for further investigation with the more detailed but also more expensive and time-consuming methods.

Solid Earth ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 1685-1705
Author(s):  
Silvia Salas-Romero ◽  
Alireza Malehmir ◽  
Ian Snowball ◽  
Benoît Dessirier

Abstract. Quick-clay landslides are common geohazards in Nordic countries and Canada. The presence of potential quick clays is confirmed using geotechnical investigations, but near-surface geophysical methods, such as seismic and resistivity surveys, can also help identify coarse-grained materials associated with the development of quick clays. We present the results of reflection seismic investigations on land and in part of the Göta River in Sweden, along which many quick-clay landslide scars exist. This is the first time that such a large-scale reflection seismic investigation has been carried out to study the subsurface structures associated with quick-clay landslides. The results also show a reasonable correlation with radio magnetotelluric and travel-time tomography models of the subsurface. Other ground geophysical data, such as high magnetic values, suggest a positive correlation with an increased thickness of the coarse-grained layer and shallower depths to the top of the bedrock and the top of the coarse-grained layer. The morphology of the river bottom and riverbanks, e.g. subaquatic landslide deposits, is shown by side-scan sonar and bathymetric data. Undulating bedrock, covered by subhorizontal sedimentary glacial and postglacial deposits, is clearly revealed. An extensive coarse-grained layer (P-wave velocity mostly between 1500 and 2500 m s−1 and resistivity from approximately 80 to 100 Ωm) exists within the sediments and is interpreted and modelled in a regional context. Several fracture zones are identified within the bedrock. Hydrological modelling of the coarse-grained layer confirms its potential for transporting fresh water infiltrated in fractures and nearby outcrops located in the central part of the study area. The modelled groundwater flow in this layer promotes the leaching of marine salts from the overlying clays by seasonal inflow–outflow cycles and/or diffusion, which contributes to the formation of potential quick clays.


Author(s):  
Angela Nastevska ◽  
Jovana Jovanova ◽  
Mary Frecker

Abstract Large scale structures can benefit from the design of compliant joints that can provide flexibility and adaptability. A high level of deformation is achieved locally with the design of flexures in compliant mechanisms. Additionally, by introducing contact-aided compliant mechanisms, nonlinear bending stiffness is achieved to make the joints flexible in one direction and stiff in the opposite one. All these concepts have been explored in small scale engineering design, but they have not been applied to large scale structures. In this paper the design of a large scale compliant mechanism is proposed for novel design of a foldable shipping container. The superelasticity of nickel titanium is shown to be beneficial in designing the joints of the compliant mechanism.


2021 ◽  
Vol 25 (5) ◽  
pp. 1153-1168
Author(s):  
Bentian Li ◽  
Dechang Pi ◽  
Yunxia Lin ◽  
Izhar Ahmed Khan

Biological network classification is an eminently challenging task in the domain of data mining since the networks contain complex structural information. Conventional biochemical experimental methods and the existing intelligent algorithms still suffer from some limitations such as immense experimental cost and inferior accuracy rate. To solve these problems, in this paper, we propose a novel framework for Biological graph classification named Biogc, which is specifically developed to predict the label of both small-scale and large-scale biological network data flexibly and efficiently. Our framework firstly presents a simplified graph kernel method to capture the structural information of each graph. Then, the obtained informative features are adopted to train different scale biological network data-oriented classifiers to construct the prediction model. Extensive experiments on five benchmark biological network datasets on graph classification task show that the proposed model Biogc outperforms the state-of-the-art methods with an accuracy rate of 98.90% on a larger dataset and 99.32% on a smaller dataset.


2001 ◽  
Vol 18 (1) ◽  
pp. 84-90 ◽  
Author(s):  
N. M. McClure-Griffiths ◽  
John M. Dickey ◽  
B. M. Gaensler ◽  
A. J. Green ◽  
R. F. Haynes ◽  
...  

AbstractWe present preliminary results from the Southern Galactic Plane Survey (SGPS) Test Region and Parkes data. As part of the pilot project for the Southern Galactic Plane Survey, observations of a Test Region (325·5° ≤l ≤ 333·5°; −0·5° ≤ b ≤ 3·5°) were completed in December 1998. Single-dish observations of the full survey region (253° ≤ l ≤ 358 ° |b| ≤ 1°) with the Parkes Radio Telescope were completed in March 2000. We present a sample of SGPS H I data, with particular attention to the smallest-and largest-scale structures seen in absorption and emission, respectively. On the large scale, we detect many prominent H I shells. On the small scale, we note extremely compact, cold clouds seen in H I self-absorption. We explore how these two classes of objects probe opposite ends of the H I spatial power spectrum.


2011 ◽  
Vol 673 ◽  
pp. 255-285 ◽  
Author(s):  
N. HUTCHINS ◽  
J. P. MONTY ◽  
B. GANAPATHISUBRAMANI ◽  
H. C. H. NG ◽  
I. MARUSIC

An array of surface hot-film shear-stress sensors together with a traversing hot-wire probe is used to identify the conditional structure associated with a large-scale skin-friction event in a high-Reynolds-number turbulent boundary layer. It is found that the large-scale skin-friction events convect at a velocity that is much faster than the local mean in the near-wall region (the convection velocity for large-scale skin-friction fluctuations is found to be close to the local mean at the midpoint of the logarithmic region). Instantaneous shear-stress data indicate the presence of large-scale structures at the wall that are comparable in scale and arrangement to the superstructure events that have been previously observed to populate the logarithmic regions of turbulent boundary layers. Conditional averages of streamwise velocity computed based on a low skin-friction footprint at the wall offer a wider three-dimensional view of the average superstructure event. These events consist of highly elongated forward-leaning low-speed structures, flanked on either side by high-speed events of similar general form. An analysis of small-scale energy associated with these large-scale events reveals that the small-scale velocity fluctuations are attenuated near the wall and upstream of a low skin-friction event, while downstream and above the low skin-friction event, the fluctuations are significantly amplified. In general, it is observed that the attenuation and amplification of the small-scale energy seems to approximately align with large-scale regions of streamwise acceleration and deceleration, respectively. Further conditional averaging based on streamwise skin-friction gradients confirms this observation. A conditioning scheme to detect the presence of meandering large-scale structures is also proposed. The large-scale meandering events are shown to be a possible source of the strong streamwise velocity gradients, and as such play a significant role in modulating the small-scale motions.


1990 ◽  
Vol 195 ◽  
Author(s):  
J. E. Maneval ◽  
M.J. Mccarthy ◽  
S. Whitaker

ABSTRACTWe report here the use of nuclear magnetic resonance imaging in the observation of liquid-phase fraction distributions in a partially-wetted sample of glass beads. By combiningboth large- and small-scale imaging techniques, we can study the transition from local-averaged saturations to large-scale averaged saturations. The image data allows us to assess the utility of the large-scale measurements We comment on the reliability and generality of the measurements for our specific system.


2019 ◽  
Author(s):  
Silvia Salas-Romero ◽  
Alireza Malehmir ◽  
Ian Snowball ◽  
Benoît Dessirier

Abstract. Quick-clay landslides are common geohazards in Nordic countries and Canada. The presence of potential quick clays is confirmed using geotechnical investigations, but near-surface geophysical methods, such as seismic and resistivity surveys, can also help identifying coarse-grained materials associated to the development of quick clays. We present the results of reflection seismic investigations on land and in part of the Göta River in Sweden, along which many quick-clay landslide scars exist. This is the first time that such a large-scale reflection seismic investigation has been carried out to study the subsurface structures associated with quick-clay landslides. The results also show a reasonable correlation with the radio magnetotelluric and traveltime tomography models. The morphology of the river bottom and riverbanks, as e.g. subaquatic landslide deposits, is shown by side-scan sonar and bathymetric data. Undulating bedrock, covered by subhorizontal sedimentary glacial and postglacial deposits is clearly revealed. An extensive coarse-grained layer exists in the sedimentary sequence and is interpreted and modelled in a regional context. Individual fractures and fracture zones are identified within bedrock and sediments. Hydrological modelling of the coarse-grained layer confirms its potential for transporting fresh water infiltrated in fractures and nearby outcrops. The groundwater flow in the coarse-grained layer promotes leaching of marine salts from the overlying clays by slow infiltration and/or diffusion, which helps in the formation of potential quick clays. Magnetic data show coarse-grained materials at the landslide scar located in the study area, which may have acted as a sliding surface together with quick clays.


Author(s):  
R. K. R. Katreddy ◽  
S. R. Chakravarthy

The present study focuses on identifying and resolving large-scale energy containing structures and turbulent eddies in a typical gas turbine combustor single nozzle rig, using particle image velocimetry in cold flow. A generic fuel-air nozzle through a swirler is integrated with a sudden expansion square duct with optical access to perform laser diagnostics. Experiments are conducted to analyze the swirl flow field under starting and operating flow conditions. Three-component velocities are obtained in cross-sectional planes of Z/D = 0, 1.25, and 2.5 (normalized by the nozzle diameter), and two-component velocities are obtained in the mid-plane along the longitudinal (Z-) axis from Z/D = 0 to 2.5D. Velocity splitting is performed using spatial Gaussian smoothing with a kernel with filter width equal to integral scale is performed over the velocity fields to resolve the field of large-scale energy containing eddies. Proper orthogonal decomposition is performed over the large-scale velocity field, and the modes obtained indicate the existence of the precessing vortex core (PVC), formation of small scales Kelvin-Helmholtz (K-H) vortices for Z/D < 1.25D, and large-scale growing K-H structures in 1.25D < Z/D < 2.5D. Turbulent kinetic energy (TKE) is obtained from the turbulent velocity fluctuations below the integral length scale and is observed to be higher at the interface of the corner recirculation zone (CRZ) and central toroidal recirculation zone (CTRZ). Resolving the swirl velocity field obtained in the above manner into large-scale structures formed by the PVC, CTRZ, K-H vortices, CRZ, and small-scale turbulence field, indicates the clear distinction in rapid mixing zones and unsteady convective zones. The length-scales and zones of these structures within the swirl combustor are identified.


Sign in / Sign up

Export Citation Format

Share Document