scholarly journals Accelerating full-waveform inversion with attenuation compensation

Geophysics ◽  
2018 ◽  
Vol 83 (1) ◽  
pp. A13-A20 ◽  
Author(s):  
Zhiguang Xue ◽  
Junzhe Sun ◽  
Sergey Fomel ◽  
Tieyuan Zhu

The calculation of the gradient in full-waveform inversion (FWI) usually involves crosscorrelating the forward-propagated source wavefield and the back-propagated data residual wavefield at each time step. In the real earth, propagating waves are typically attenuated due to the viscoelasticity, which results in an attenuated gradient for FWI. Replacing the attenuated true gradient with a [Formula: see text]-compensated gradient can accelerate the convergence rate of the inversion process. We have used a phase-dispersion and an amplitude-loss decoupled constant-[Formula: see text] wave equation to formulate a viscoacoustic FWI. We used this wave equation to generate a [Formula: see text]-compensated gradient, which recovers amplitudes while preserving the correct kinematics. We construct an exact adjoint operator in a discretized form using the low-rank wave extrapolation technique, and we implement the gradient compensation by reversing the sign of the amplitude-loss term in the forward and adjoint operators. This leads to a [Formula: see text]-dependent gradient preconditioning method. Using numerical tests with synthetic data, we demonstrate that the proposed viscoacoustic FWI using a constant-[Formula: see text] wave equation is capable of producing high-quality velocity models, and our [Formula: see text]-compensated gradient accelerates its convergence rate.

2017 ◽  
Vol 5 (3) ◽  
pp. SO21-SO30 ◽  
Author(s):  
Shihang Feng ◽  
Gerard T. Schuster

We have developed a tutorial for skeletonized inversion of pseudo-acoustic anisotropic vertical symmetry axis (VTI) data. We first invert for the anisotropic models using wave-equation traveltime inversion. Here, the skeletonized data are the traveltimes of transmitted and/or reflected arrivals that lead to simpler misfit functions and more robust convergence compared with full-waveform inversion. This provides a good starting model for waveform inversion. The effectiveness of this procedure is illustrated with synthetic data examples and a marine data set recorded in the Gulf of Mexico.


Geophysics ◽  
2014 ◽  
Vol 79 (2) ◽  
pp. R55-R61 ◽  
Author(s):  
Tariq Alkhalifah ◽  
Yunseok Choi

In full-waveform inversion (FWI), a gradient-based update of the velocity model requires an initial velocity that produces synthetic data that are within a half-cycle, everywhere, from the field data. Such initial velocity models are usually extracted from migration velocity analysis or traveltime tomography, among other means, and are not guaranteed to adhere to the FWI requirements for an initial velocity model. As such, we evaluated an objective function based on the misfit in the instantaneous traveltime between the observed and modeled data. This phase-based attribute of the wavefield, along with its phase unwrapping characteristics, provided a frequency-dependent traveltime function that was easy to use and quantify, especially compared to conventional phase representation. With a strong Laplace damping of the modeled, potentially low-frequency, data along the time axis, this attribute admitted a first-arrival traveltime that could be compared with picked ones from the observed data, such as in wave equation tomography (WET). As we relax the damping on the synthetic and observed data, the objective function measures the misfit in the phase, however unwrapped. It, thus, provided a single objective function for a natural transition from WET to FWI. A Marmousi example demonstrated the effectiveness of the approach.


Geophysics ◽  
2013 ◽  
Vol 78 (6) ◽  
pp. R223-R233 ◽  
Author(s):  
Yong Ma ◽  
Dave Hale

In reflection seismology, full-waveform inversion (FWI) can generate high-wavenumber subsurface velocity models but often suffers from an objective function with local minima caused mainly by the absence of low frequencies in seismograms. These local minima cause cycle skipping when the low-wavenumber component in the initial velocity model for FWI is far from the true model. To avoid cycle skipping, we discovered a new wave-equation reflection traveltime inversion (WERTI) to update the low-wavenumber component of the velocity model, while using FWI to only update high-wavenumber details of the model. We implemented the low- and high-wavenumber inversions in an alternating way. In WERTI, we used dynamic image warping (DIW) to estimate the time shifts between recorded data and synthetic data. When compared with correlation-based techniques often used in traveltime estimation, DIW can avoid cycle skipping and estimate the time shifts accurately, even when shifts vary rapidly. Hence, by minimizing traveltime shifts estimated by dynamic warping, WERTI reduces errors in reflection traveltime inversion. Then, conventional FWI uses the low-wavenumber component estimated by WERTI as a new initial model and thereby refines the model with high-wavenumber details. The alternating combination of WERTI and FWI mitigates the velocity-depth ambiguity and can recover subsurface velocities using only high-frequency reflection data.


Geophysics ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. R493-R507
Author(s):  
Jizhong Yang ◽  
Yunyue Elita Li ◽  
Yuzhu Liu ◽  
Yanwen Wei ◽  
Haohuan Fu

Full-waveform inversion (FWI) is a highly nonlinear and nonconvex problem. To mitigate the dependence of FWI on the quality of starting model and on the low frequencies in the data, we apply the gradient sampling algorithm (GSA) introduced for nonsmooth, nonconvex optimization problems to FWI. The search space is hugely expanded to have more freedom to accommodate large velocity errors in the starting model. The original implementation of GSA requires explicit calculation of the gradient at each sampled vector, which is prohibitively expensive. Based on the observation that a slight perturbation in the velocity model causes a small spatial shift of the wavefield, we have approximated the sampled gradients by crosscorrelating the space-shifted source- and receiver-side wavefields. Theoretical derivation suggests that the two wavefields should be shifted in the same direction to obtain reasonable low-wavenumber updates. The final descent search direction is obtained by summing all the shifted gradients. For practical implementation, we only take one random space shift at each time step during the gradient calculation. This simplification provides an efficient realization in which the computational costs and memory requirements are the same as conventional FWI. Multiple numerical examples demonstrate that the proposed method alleviates the cycle-skipping problem of conventional FWI when starting from very crude initial velocity models without low-frequency data.


2019 ◽  
Vol 38 (3) ◽  
pp. 204-213 ◽  
Author(s):  
Ping Wang ◽  
Zhigang Zhang ◽  
Jiawei Mei ◽  
Feng Lin ◽  
Rongxin Huang

Full-waveform inversion (FWI), proposed by Lailly and Tarantola in the 1980s, is considered to be the most promising data-driven tool for automatically building velocity models. Many successful examples have been reported using FWI to update shallow sediments, gas pockets, and mud volcanoes. However, successful applications of FWI to update salt structures had almost only been seen on synthetic data until recent progress at the Atlantis Field in the Gulf of Mexico. We revisited some aspects of FWI algorithms to minimize cycle-skipping and amplitude discrepancy issues and derived an FWI algorithm that is able to build complex salt velocity models. We applied this algorithm to a variety of data sets, including wide-azimuth and full-azimuth (FAZ) streamer data as well as ocean-bottom-node data, with different geologic settings in order to demonstrate the effectiveness of the method for salt velocity updates and to examine some fundamentals of the salt problem. We observed that, in multiple cases, salt velocity models from this FWI algorithm produced subsalt images of superior quality. We demonstrate with one FAZ streamer data example in Keathley Canyon that we do not necessarily need very high frequency in FWI for subsalt imaging purposes. Based on this observation, we envision that sparse node for velocity acquisition may provide appropriate data to handle large and complex salt bodies with FWI. We believe the combination of advanced FWI algorithms and appropriate data acquisition will bring a step change to subsalt imaging.


2019 ◽  
Vol 38 (3) ◽  
pp. 197-203 ◽  
Author(s):  
Jizhong Yang ◽  
Yunyue Elita Li ◽  
Yanwen Wei ◽  
Haohuan Fu ◽  
Yuzhu Liu

Full-waveform inversion (FWI) has the great potential to retrieve high-fidelity subsurface models, with the constraint that the traveltime difference between the predicted data and the observed data should be less than half of the period at the lowest available frequency. If the above constraint is not satisfied, FWI will suffer from severe convergence problems and may get stuck in erroneous local minimum. To mitigate the dependence of FWI on the quality of the starting model, we apply the robust gradient sampling algorithm (GSA) on nonsmooth, nonconvex optimization problems to FWI. The original implementation of GSA requires explicit calculation of the gradient at each sampling point. When combined with FWI, this procedure involves tremendous computational costs for calculating the forward- and backward-propagated wavefields at each sampled velocity model within the vicinity of the current model estimate. Through numerical analyses, we find that the gradients corresponding to slightly perturbed velocity models can be approximated by space shifting the gradient obtained from the current velocity model. By randomly choosing one space shift at each time step during the gradient calculation, the computational cost is thus the same as conventional FWI. Numerical examples based on the 2004 BP model demonstrate that the proposed method can provide much better results than conventional FWI when starting from a crude initial velocity model.


Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 599
Author(s):  
Danilo Cruz ◽  
João de Araújo ◽  
Carlos da Costa ◽  
Carlos da Silva

Full waveform inversion is an advantageous technique for obtaining high-resolution subsurface information. In the petroleum industry, mainly in reservoir characterisation, it is common to use information from wells as previous information to decrease the ambiguity of the obtained results. For this, we propose adding a relative entropy term to the formalism of the full waveform inversion. In this context, entropy will be just a nomenclature for regularisation and will have the role of helping the converge to the global minimum. The application of entropy in inverse problems usually involves formulating the problem, so that it is possible to use statistical concepts. To avoid this step, we propose a deterministic application to the full waveform inversion. We will discuss some aspects of relative entropy and show three different ways of using them to add prior information through entropy in the inverse problem. We use a dynamic weighting scheme to add prior information through entropy. The idea is that the prior information can help to find the path of the global minimum at the beginning of the inversion process. In all cases, the prior information can be incorporated very quickly into the full waveform inversion and lead the inversion to the desired solution. When we include the logarithmic weighting that constitutes entropy to the inverse problem, we will suppress the low-intensity ripples and sharpen the point events. Thus, the addition of entropy relative to full waveform inversion can provide a result with better resolution. In regions where salt is present in the BP 2004 model, we obtained a significant improvement by adding prior information through the relative entropy for synthetic data. We will show that the prior information added through entropy in full-waveform inversion formalism will prove to be a way to avoid local minimums.


Geophysics ◽  
2008 ◽  
Vol 73 (5) ◽  
pp. VE101-VE117 ◽  
Author(s):  
Hafedh Ben-Hadj-Ali ◽  
Stéphane Operto ◽  
Jean Virieux

We assessed 3D frequency-domain (FD) acoustic full-waveform inversion (FWI) data as a tool to develop high-resolution velocity models from low-frequency global-offset data. The inverse problem was posed as a classic least-squares optimization problem solved with a steepest-descent method. Inversion was applied to a few discrete frequencies, allowing management of a limited subset of the 3D data volume. The forward problem was solved with a finite-difference frequency-domain method based on a massively parallel direct solver, allowing efficient multiple-shot simulations. The inversion code was fully parallelized for distributed-memory platforms, taking advantage of a domain decomposition of the modeled wavefields performed by the direct solver. After validation on simple synthetic tests, FWI was applied to two targets (channel and thrust system) of the 3D SEG/EAGE overthrust model, corresponding to 3D domains of [Formula: see text] and [Formula: see text], respectively. The maximum inverted frequencies are 15 and [Formula: see text] for the two applications. A maximum of 30 dual-core biprocessor nodes with [Formula: see text] of shared memory per node were used for the second target. The main structures were imaged successfully at a resolution scale consistent with the inverted frequencies. Our study confirms the feasibility of 3D frequency-domain FWI of global-offset data on large distributed-memory platforms to develop high-resolution velocity models. These high-velocity models may provide accurate macromodels for wave-equation prestack depth migration.


Sign in / Sign up

Export Citation Format

Share Document