scholarly journals Skeletonized wave-equation inversion in vertical symmetry axis media without too much math

2017 ◽  
Vol 5 (3) ◽  
pp. SO21-SO30 ◽  
Author(s):  
Shihang Feng ◽  
Gerard T. Schuster

We have developed a tutorial for skeletonized inversion of pseudo-acoustic anisotropic vertical symmetry axis (VTI) data. We first invert for the anisotropic models using wave-equation traveltime inversion. Here, the skeletonized data are the traveltimes of transmitted and/or reflected arrivals that lead to simpler misfit functions and more robust convergence compared with full-waveform inversion. This provides a good starting model for waveform inversion. The effectiveness of this procedure is illustrated with synthetic data examples and a marine data set recorded in the Gulf of Mexico.

Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. R411-R427 ◽  
Author(s):  
Gang Yao ◽  
Nuno V. da Silva ◽  
Michael Warner ◽  
Di Wu ◽  
Chenhao Yang

Full-waveform inversion (FWI) is a promising technique for recovering the earth models for exploration geophysics and global seismology. FWI is generally formulated as the minimization of an objective function, defined as the L2-norm of the data residuals. The nonconvex nature of this objective function is one of the main obstacles for the successful application of FWI. A key manifestation of this nonconvexity is cycle skipping, which happens if the predicted data are more than half a cycle away from the recorded data. We have developed the concept of intermediate data for tackling cycle skipping. This intermediate data set is created to sit between predicted and recorded data, and it is less than half a cycle away from the predicted data. Inverting the intermediate data rather than the cycle-skipped recorded data can then circumvent cycle skipping. We applied this concept to invert cycle-skipped first arrivals. First, we picked up the first breaks of the predicted data and the recorded data. Second, we linearly scaled down the time difference between the two first breaks of each shot into a series of time shifts, the maximum of which was less than half a cycle, for each trace in this shot. Third, we moved the predicted data with the corresponding time shifts to create the intermediate data. Finally, we inverted the intermediate data rather than the recorded data. Because the intermediate data are not cycle-skipped and contain the traveltime information of the recorded data, FWI with intermediate data updates the background velocity model in the correct direction. Thus, it produces a background velocity model accurate enough for carrying out conventional FWI to rebuild the intermediate- and short-wavelength components of the velocity model. Our numerical examples using synthetic data validate the intermediate-data concept for tackling cycle skipping and demonstrate its effectiveness for the application to first arrivals.


Geophysics ◽  
2018 ◽  
Vol 83 (1) ◽  
pp. A13-A20 ◽  
Author(s):  
Zhiguang Xue ◽  
Junzhe Sun ◽  
Sergey Fomel ◽  
Tieyuan Zhu

The calculation of the gradient in full-waveform inversion (FWI) usually involves crosscorrelating the forward-propagated source wavefield and the back-propagated data residual wavefield at each time step. In the real earth, propagating waves are typically attenuated due to the viscoelasticity, which results in an attenuated gradient for FWI. Replacing the attenuated true gradient with a [Formula: see text]-compensated gradient can accelerate the convergence rate of the inversion process. We have used a phase-dispersion and an amplitude-loss decoupled constant-[Formula: see text] wave equation to formulate a viscoacoustic FWI. We used this wave equation to generate a [Formula: see text]-compensated gradient, which recovers amplitudes while preserving the correct kinematics. We construct an exact adjoint operator in a discretized form using the low-rank wave extrapolation technique, and we implement the gradient compensation by reversing the sign of the amplitude-loss term in the forward and adjoint operators. This leads to a [Formula: see text]-dependent gradient preconditioning method. Using numerical tests with synthetic data, we demonstrate that the proposed viscoacoustic FWI using a constant-[Formula: see text] wave equation is capable of producing high-quality velocity models, and our [Formula: see text]-compensated gradient accelerates its convergence rate.


Geophysics ◽  
2008 ◽  
Vol 73 (5) ◽  
pp. VE135-VE144 ◽  
Author(s):  
Denes Vigh ◽  
E. William Starr

Prestack depth migration has been used for decades to derive velocity distributions in depth. Numerous tools and methodologies have been developed to reach this goal. Exploration in geologically more complex areas exceeds the abilities of existing methods. New data-acquisition and data-processing methods are required to answer these new challenges effectively. The recently introduced wide-azimuth data acquisition method offers better illumination and noise attenuation as well as an opportunity to more accurately determine velocities for imaging. One of the most advanced tools for depth imaging is full-waveform inversion. Prestack seismic full-waveform inversion is very challenging because of the nonlinearity and nonuniqueness of the solution. Combined with multiple iterations of forward modeling and residual wavefield back propagation, the method is computer intensive, especially for 3D projects. We studied a time-domain, plane-wave implementation of 3D waveform inversion. We found that plane-wave gathers are an attractive input to waveform inversion with dramatically reduced computer run times compared to traditional shot-gather approaches. The study was conducted on two synthetic data sets — Marmousi2 and SMAART Pluto 1.5 — and a field data set. The results showed that a velocity field can be reconstructed well using a multiscale time-domain implementation of waveform inversion. Although the time-domain solution does not take advantage of wavenumber redundancy, the method is feasible on current computer architectures for 3D surveys. The inverted velocity volume produces a quality image for exploration geologists by using numerous iterations of waveform inversion.


Geophysics ◽  
2016 ◽  
Vol 81 (4) ◽  
pp. R211-R223 ◽  
Author(s):  
Debanjan Datta ◽  
Mrinal K. Sen

Full-waveform inversion (FWI) has become a popular method to estimate elastic earth properties from seismograms. It is formulated as a data-fitting least-squares minimization problem that iteratively updates an initial velocity model with the scaled gradient of the misfit until a satisfactory match between the real and synthetic data is obtained. However, such a local optimization approach can converge to a local minimum if the starting model used is not close enough to an optimal model. We have developed a two-step process in which we first estimate a starting model using a global optimization method. Unlike local optimization methods, a global optimization method starts with a random starting model and is not generally susceptible to be trapped in a local minimum. The starting model for FWI that we aim to estimate is sparsely parameterized and contains a set of interfaces and velocities that are used to represent the entire velocity model. We have obtained the depth of the interfaces and the velocities by minimizing the data misfit in the least-squares sense using a global optimization method called very fast simulated annealing (VFSA). Once the sparse velocity model was obtained from VFSA, we used that as a starting model in a conventional gradient-based FWI to obtain the final model. We have applied the proposed method to one synthetic data set and two field data sets from offshore India. The proposed method was able to estimate a velocity model that was not cycle skipped for realistic frequency bands. We have demonstrated that with the proper choice of model parameterization and optimization parameters, the global and gradient optimization algorithms converge in a finite number of iterations. We have determined that the resulting algorithm is computationally feasible in two dimensions and accurate for practical implementation of FWI.


Geophysics ◽  
2013 ◽  
Vol 78 (6) ◽  
pp. R223-R233 ◽  
Author(s):  
Yong Ma ◽  
Dave Hale

In reflection seismology, full-waveform inversion (FWI) can generate high-wavenumber subsurface velocity models but often suffers from an objective function with local minima caused mainly by the absence of low frequencies in seismograms. These local minima cause cycle skipping when the low-wavenumber component in the initial velocity model for FWI is far from the true model. To avoid cycle skipping, we discovered a new wave-equation reflection traveltime inversion (WERTI) to update the low-wavenumber component of the velocity model, while using FWI to only update high-wavenumber details of the model. We implemented the low- and high-wavenumber inversions in an alternating way. In WERTI, we used dynamic image warping (DIW) to estimate the time shifts between recorded data and synthetic data. When compared with correlation-based techniques often used in traveltime estimation, DIW can avoid cycle skipping and estimate the time shifts accurately, even when shifts vary rapidly. Hence, by minimizing traveltime shifts estimated by dynamic warping, WERTI reduces errors in reflection traveltime inversion. Then, conventional FWI uses the low-wavenumber component estimated by WERTI as a new initial model and thereby refines the model with high-wavenumber details. The alternating combination of WERTI and FWI mitigates the velocity-depth ambiguity and can recover subsurface velocities using only high-frequency reflection data.


Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 599
Author(s):  
Danilo Cruz ◽  
João de Araújo ◽  
Carlos da Costa ◽  
Carlos da Silva

Full waveform inversion is an advantageous technique for obtaining high-resolution subsurface information. In the petroleum industry, mainly in reservoir characterisation, it is common to use information from wells as previous information to decrease the ambiguity of the obtained results. For this, we propose adding a relative entropy term to the formalism of the full waveform inversion. In this context, entropy will be just a nomenclature for regularisation and will have the role of helping the converge to the global minimum. The application of entropy in inverse problems usually involves formulating the problem, so that it is possible to use statistical concepts. To avoid this step, we propose a deterministic application to the full waveform inversion. We will discuss some aspects of relative entropy and show three different ways of using them to add prior information through entropy in the inverse problem. We use a dynamic weighting scheme to add prior information through entropy. The idea is that the prior information can help to find the path of the global minimum at the beginning of the inversion process. In all cases, the prior information can be incorporated very quickly into the full waveform inversion and lead the inversion to the desired solution. When we include the logarithmic weighting that constitutes entropy to the inverse problem, we will suppress the low-intensity ripples and sharpen the point events. Thus, the addition of entropy relative to full waveform inversion can provide a result with better resolution. In regions where salt is present in the BP 2004 model, we obtained a significant improvement by adding prior information through the relative entropy for synthetic data. We will show that the prior information added through entropy in full-waveform inversion formalism will prove to be a way to avoid local minimums.


Geophysics ◽  
2016 ◽  
Vol 81 (4) ◽  
pp. U25-U38 ◽  
Author(s):  
Nuno V. da Silva ◽  
Andrew Ratcliffe ◽  
Vetle Vinje ◽  
Graham Conroy

Parameterization lies at the center of anisotropic full-waveform inversion (FWI) with multiparameter updates. This is because FWI aims to update the long and short wavelengths of the perturbations. Thus, it is important that the parameterization accommodates this. Recently, there has been an intensive effort to determine the optimal parameterization, centering the fundamental discussion mainly on the analysis of radiation patterns for each one of these parameterizations, and aiming to determine which is best suited for multiparameter inversion. We have developed a new parameterization in the scope of FWI, based on the concept of kinematically equivalent media, as originally proposed in other areas of seismic data analysis. Our analysis is also based on radiation patterns, as well as the relation between the perturbation of this set of parameters and perturbation in traveltime. The radiation pattern reveals that this parameterization combines some of the characteristics of parameterizations with one velocity and two Thomsen’s parameters and parameterizations using two velocities and one Thomsen’s parameter. The study of perturbation of traveltime with perturbation of model parameters shows that the new parameterization is less ambiguous when relating these quantities in comparison with other more commonly used parameterizations. We have concluded that our new parameterization is well-suited for inverting diving waves, which are of paramount importance to carry out practical FWI successfully. We have demonstrated that the new parameterization produces good inversion results with synthetic and real data examples. In the latter case of the real data example from the Central North Sea, the inverted models show good agreement with the geologic structures, leading to an improvement of the seismic image and flatness of the common image gathers.


Sign in / Sign up

Export Citation Format

Share Document