scholarly journals 3D analysis of pore effect on composite elasticity by means of the finite-element method

Geophysics ◽  
2016 ◽  
Vol 81 (1) ◽  
pp. L15-L26
Author(s):  
Akira Yoneda ◽  
Ferdous Hasan Sohag

We developed a 3D buffer-layer finite-element method model to investigate the porosity effect on macroscopic elasticity. Using the 3D model, the effect of pores on bulk effective elastic properties was systematically analyzed by changing the degree of porosity, the aspect ratio of the ellipsoidal pore, and the elasticity of the material. The results in 3D space were compared with the previous results in 2D space. Derivatives of normalized elastic stiffness constants with respect to needle-type porosity were integers, if the Poisson ratio of a matrix material was zero; those derivatives of normalized stiffness elastic constants for [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] converged to [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text], respectively, at the corresponding condition. We have developed a criterion of [Formula: see text], where the mutual interaction between pores became negligible for macroscopic composite elasticity. These derivatives were nearly constant at less than 5% porosity in the case of a spherical pore, suggesting that the interaction between neighboring pores was insignificant if the representative size of the pore was less than one-third of the mean distance between neighboring pores. The relations we obtained in this work were successfully applied to invert the bulk modulus and rigidity of [Formula: see text] as a case study; the performance of the inverting scheme was confirmed through this assessment. Thus, our scheme is applicable to predict the macroscopic elasticity of porous object as well.

2019 ◽  
Vol 130 ◽  
pp. 01001
Author(s):  
Agri Suwandi ◽  
Dede Lia Zariatin ◽  
Bambang Sulaksono ◽  
Estu Prayogi ◽  
I Made Widana

The fishing deck machinery is the tools used to collect fish in fishing activities. Fishing deck machinery is intended to improve the effectiveness of fishing operations. The mission of the Ministry of Marine Affairs and Fishery Year 2015-2019 in the Regulation of the Minister of Marine and Fisheries No. 45/PERMEN-KP/2015 which is a priority is to provide assistance for fishing facilities for fishermen; it is necessary to develop and optimize fishing deck machinery. To assure the safety and dependability of these fishing deck machinery, calculations, simulation and functional tests are needed. This paper discusses the prediction of structural failure in the design of fishing deck machinery a hydraulic type with finite element method simulation approach. The results of the FEM simulation analysis are (i) the maximum value of von-Mises stress is greater than the ultimate tensile strength of the material; (ii) 1st principal stress value minimum is smaller than the ultimate tensile strength of material; (iii). the Poisson ratio value higher than the Poisson ratio value of the material. Base on the simulation result, the structural design of fishing deck machinery is safety.


2015 ◽  
Vol 13 (3) ◽  
pp. 274-286 ◽  
Author(s):  
Allahyar Geramy ◽  
Joseph Bouserhal ◽  
Domingo Martin ◽  
Pedram Baghaeian

2020 ◽  
Vol 20 (3) ◽  
pp. 501-516
Author(s):  
Gwanghyun Jo ◽  
Do Young Kwak

AbstractThe purpose of this paper is to develop a reduced Crouzeix–Raviart immersed finite element method (RCRIFEM) for two-dimensional elasticity problems with interface, which is based on the Kouhia–Stenberg finite element method (Kouhia et al. 1995) and Crouzeix–Raviart IFEM (CRIFEM) (Kwak et al. 2017). We use a {P_{1}}-conforming like element for one of the components of the displacement vector, and a {P_{1}}-nonconforming like element for the other component. The number of degrees of freedom of our scheme is reduced to two thirds of CRIFEM. Furthermore, we can choose penalty parameters independent of the Poisson ratio. One of the penalty parameters depends on Lamé’s second constant μ, and the other penalty parameter is independent of both μ and λ. We prove the optimal order error estimates in piecewise {H^{1}}-norm, which is independent of the Poisson ratio. Numerical experiments show optimal order of convergence both in {L^{2}} and piecewise {H^{1}}-norms for all problems including nearly incompressible cases.


2012 ◽  
Vol 466-467 ◽  
pp. 366-370
Author(s):  
Fue Han ◽  
Chang Qing Chen ◽  
Ya Peng Shen

Through the finite element method, the elastic modulus and Poisson ratio out of plane of the honeycomb nanoporous materials are obtained. In the end, the values are contrasted with the scale values. Results show that the values are same to the scale values.


2016 ◽  
Vol 2016 ◽  
pp. 1-6
Author(s):  
Jixiao Tao ◽  
Yuzhou Sun

This paper reports a systematic study on the elastic property of bulk silicon nanomaterials using the atomic finite element method. The Tersoff-Brenner potential is used to describe the interaction between silicon atoms, and the atomic finite element method is constructed in a computational scheme similar to the continuum finite element method. Young’s modulus and Poisson ratio are calculated for[100],[110], and[111] silicon nanowires that are treated as three-dimensional structures. It is found that the nanowire possesses the lowest Young’s modulus along the[100] direction, while the[110] nanowire has the highest value with the same radius. The bending deformation of[100] silicon nanowire is also modeled, and the bending stiffness is calculated.


2012 ◽  
Vol 525-526 ◽  
pp. 541-544
Author(s):  
Cha Yun Kimyong ◽  
Sontipee Aimmanee ◽  
Vitoon Uthaisangsuk ◽  
Wishsanuruk Wechsatol

Fiber-reinforced composite materials (FRC) are used in a wide range of applications, since FRC exhibits higher strength-to-density ratio in comparison to traditional materials due to long fibers embedded in a matrix material. Failures occurred in FRC components are complicated because of the interaction of the constituents. The aim of this study is to investigate damage behavior in a unidirectional glass fiber-reinforced epoxy on both macro-and micro-levels by using finite element method. The Hashins criterion was applied to define the onset of macroscopic damage. The progression of the macroscopic damage was described using the Matzenmiller-Lubliner-Taylor model that was based on fracture energy dissipation of material. To examine the microscopic failure FE representative volume elements consisting of the glass fibers surrounded by epoxy matrix with defined volume fraction was considered. Elastic-brittle isotropic behaviour and the Coulomb-Mohr criterion were applied for both fiber and epoxy. The results of the macroscopic and microscopic analyses were correlated. As a result, damage initiation and damage development for the investigated FRC could be predicted.


Sign in / Sign up

Export Citation Format

Share Document