Weak-anisotropy moveout approximations for P-waves in homogeneous layers of monoclinic or higher anisotropy symmetries

Geophysics ◽  
2016 ◽  
Vol 81 (2) ◽  
pp. C17-C37 ◽  
Author(s):  
Véronique Farra ◽  
Ivan Pšenčík ◽  
Petr Jílek

We have used so-called weak anisotropy (WA) parameterization as an alternative to the parameterization of generally anisotropic media by a stiffness tensor. WA parameters consist of linear combinations of normalized stiffness-tensor elements controlling various seismic signatures; hence, they are theoretically extractable from seismic data. They are dimensionless and can be designed to have the same order of magnitude. WA parameters, similarly to Thomsen-type parameters, have a clear physical interpretation. They are, however, applicable to anisotropy of any symmetry, strength, and orientation. They are defined in coordinate systems independent of the symmetry elements of the studied media. Expressions using WA parameters naturally simplify as the anisotropy becomes weaker or as the anisotropy symmetry increases. We expect that, due to these useful properties, WA parameterization can potentially provide a framework for seismic data processing in generally anisotropic media. Using the WA parameterization, we have derived and tested approximate P-wave moveout formulas for a homogeneous layer of up-to-monoclinic symmetry, underlain by a horizontal reflector coinciding with a symmetry plane. The derived traveltime formulas represent an expansion of the traveltime with respect to (small) WA parameters. For the comparison with standard moveout formulas, we expressed ours in the common form of nonhyperbolic moveout, containing normal moveout velocity and a quartic coefficient as functions of the WA parameters. The accuracy of our formulas depends strongly on the deviation of ray- and phase-velocity directions (controlled by the deviation of the ray and phase velocities). The errors do not generally increase with increasing offset, nor do they increase with decreasing anisotropy symmetry. The accuracy of our formulas is comparable with, or better than, the accuracy of commonly used formulas.

Geophysics ◽  
2017 ◽  
Vol 82 (4) ◽  
pp. WA23-WA32 ◽  
Author(s):  
Véronique Farra ◽  
Ivan Pšenčík

We have developed approximate P-wave reflection moveout formulas for a homogeneous layer of orthorhombic symmetry overlying a horizontal or dipping reflector. The symmetry planes of an orthorhombic medium in the layer can be arbitrarily oriented. The formulas are based on the weak-anisotropy approximation. Thus, their accuracy depends not only on the strength of anisotropy, but also on the deviations of the phase and ray velocities. Nevertheless, the performed tests indicate that for P-wave anisotropy of approximately 25%, the maximum relative traveltime errors of the formulas do not exceed 3%. The formulas are expressed in terms of six P-wave weak-anisotropy parameters and three Euler angles specifying the orientation of the symmetry planes of the orthorhombic medium. In the case of a dipping reflector, the formulas also depend on the apparent dip angle of the reflector.


Geophysics ◽  
2005 ◽  
Vol 70 (5) ◽  
pp. D43-D53 ◽  
Author(s):  
Xiaoxia Xu ◽  
Ilya Tsvankin ◽  
Andrés Pech

For processing and inverting reflection data, it is convenient to represent geometrical spreading through the reflection traveltime measured at the earth's surface. Such expressions are particularly important for azimuthally anisotropic models in which variations of geometrical spreading with both offset and azimuth can significantly distort the results of wide-azimuth amplitude-variation-with-offset (AVO) analysis. Here, we present an equation for relative geometrical spreading in laterally homogeneous, arbitrarily anisotropic media as a simple function of the spatial derivatives of reflection traveltimes. By employing the Tsvankin-Thomsen nonhyperbolic moveout equation, the spreading is represented through the moveout coefficients, which can be estimated from surface seismic data. This formulation is then applied to P-wave reflections in an orthorhombic layer to evaluate the distortions of the geometrical spreading caused by both polar and azimuthal anisotropy. The relative geometrical spreading of P-waves in homogeneous orthorhombic media is controlled by five parameters that are also responsible for time processing. The weak-anisotropy approximation, verified by numerical tests, shows that azimuthal velocity variations contribute significantly to geometrical spreading, and the existing equations for transversely isotropic media with a vertical symmetry axis (VTI) cannot be applied even in the vertical symmetry planes. The shape of the azimuthally varying spreading factor is close to an ellipse for offsets smaller than the reflector depth but becomes more complicated for larger offset-to-depth ratios. The overall magnitude of the azimuthal variation of the geometrical spreading for the moderately anisotropic model used in the tests exceeds 25% for a wide range of offsets. While the methodology developed here is helpful in modeling and analyzing anisotropic geometrical spreading, its main practical application is in correcting the wide-azimuth AVO signature for the influence of the anisotropic overburden.


Geophysics ◽  
2003 ◽  
Vol 68 (6) ◽  
pp. 2082-2091 ◽  
Author(s):  
Bjørn Ursin ◽  
Ketil Hokstad

Compensation for geometrical spreading is important in prestack Kirchhoff migration and in amplitude versus offset/amplitude versus angle (AVO/AVA) analysis of seismic data. We present equations for the relative geometrical spreading of reflected and transmitted P‐ and S‐wave in horizontally layered transversely isotropic media with vertical symmetry axis (VTI). We show that relatively simple expressions are obtained when the geometrical spreading is expressed in terms of group velocities. In weakly anisotropic media, we obtain simple expressions also in terms of phase velocities. Also, we derive analytical equations for geometrical spreading based on the nonhyperbolic traveltime formula of Tsvankin and Thomsen, such that the geometrical spreading can be expressed in terms of the parameters used in time processing of seismic data. Comparison with numerical ray tracing demonstrates that the weak anisotropy approximation to geometrical spreading is accurate for P‐waves. It is less accurate for SV‐waves, but has qualitatively the correct form. For P waves, the nonhyperbolic equation for geometrical spreading compares favorably with ray‐tracing results for offset‐depth ratios less than five. For SV‐waves, the analytical approximation is accurate only at small offsets, and breaks down at offset‐depth ratios less than unity. The numerical results are in agreement with the range of validity for the nonhyperbolic traveltime equations.


Geophysics ◽  
2017 ◽  
Vol 82 (5) ◽  
pp. C175-C185 ◽  
Author(s):  
Ivan Pšenčík ◽  
Véronique Farra

We have developed approximate nonhyperbolic P-wave moveout formulas applicable to weakly or moderately anisotropic media of arbitrary anisotropy symmetry and orientation. Instead of the commonly used Taylor expansion of the square of the reflection traveltime in terms of the square of the offset, we expand the square of the reflection traveltime in terms of weak-anisotropy (WA) parameters. No acoustic approximation is used. We specify the formulas designed for anisotropy of arbitrary symmetry for the transversely isotropic (TI) media with the axis of symmetry oriented arbitrarily in the 3D space. Resulting formulas depend on three P-wave WA parameters specifying the TI symmetry and two angles specifying the orientation of the axis of symmetry. Tests of the accuracy of the more accurate of the approximate formulas indicate that maximum relative errors do not exceed 0.3% or 2.5% for weak or moderate P-wave anisotropy, respectively.


Geophysics ◽  
2000 ◽  
Vol 65 (4) ◽  
pp. 1294-1304 ◽  
Author(s):  
P. N. J. Rasolofosaon

When processing and inverting seismic reflection data, the NMO velocity must be correctly described, taking into account realistic situations such as the presence of anisotropy and dipping reflectors. Some dip‐moveout (DMO) algorithms have been developed, such as Tsvankin’s analytic formula. It describes the anisotropy‐induced distortions in the classical isotropic cosine of dip dependence of the NMO velocity. However, it is restricted to the vertical symmetry planes of anisotropic media, so the technique is unsuitable for the azimuthal inspection of sedimentary rocks, either with horizontal bedding and vertical fractures or with dipping bedding but no fractures. However, under the weak anisotropy approximation the deviations of the rays from a vertical plane can be neglected for the traveltimes computation, and the equation can still be applicable. Based on this approach, an explicit analytic expression for the P-wave NMO velocity in the presence of horizontal or dipping reflectors in media exhibiting the most general symmetry type (triclinic) is obtained in this work. If the medium exhibits a horizontal symmetry plane, the concise DMO equations are formally identical to Tsvankin’s except that the parameters δ and ε are not constant but depend on the azimuth ψ Physically, δ(ψ) is the deviation from the vertical P-wave velocity of the P-wave NMO velocity for a horizontal reflector normalized by the vertical P-wave velocity for the azimuth ψ. The function ε(ψ) has the same definition as δ(ψ) except that the P-wave NMO velocity is replaced by the horizontal P-wave velocity. Both depend linearly on (1) new dimensionless anisotropy parameters and (2) generalizing to arbitrary symmetry the transversely isotropic parameters δ and ε. In the most general symmetry case (triclinic), an additional term to the DMO formula is necessary. The numerical examples, based on experimental data in rocks, show two things. First, the magnitude of the DMO errors induced by anisotropy depends primarily on the absolute value of ε(ψ) − δ(ψ) and not on the individual values of ε(ψ) and δ(ψ), which is a direct consequence of the similarity between Tsvankin’s equation and the equation presented here. Second, the anisotropy‐induced DMO correction can be significant even in the presence of moderate anisotropy and can exhibit complex azimuthal dependence.


Geophysics ◽  
2009 ◽  
Vol 74 (5) ◽  
pp. WB193-WB202 ◽  
Author(s):  
Jyoti Behura ◽  
Ilya Tsvankin

Such reservoir rocks as tar sands are characterized by significant attenuation and, in some cases, attenuation anisotropy. Most existing attenuation studies are focused on plane-wave attenuation coefficients, which determine the amplitude decay along the raypath of seismic waves. Here we study the influence of attenuation on PP- and PS-wave reflection coefficients for anisotropic media with the main emphasis on transversely isotropic models with a vertical symmetry axis (VTI). Concise analytic solutions obtained by linearizing the exact plane-wave reflection coefficients are verified by numerical modeling. To make a substantial contribution to reflection coefficients, attenuation must be strong, with the quality factor [Formula: see text] not exceeding 10. For such highly attenuative media, it is also necessary to take attenuation anisotropy into account if the magnitude of the Thomsen-styleattenuation-anisotropy parameters is relatively large. In general, the linearized reflection coefficients in attenuative media include velocity-anisotropy parameters but have almost “isotropic” dependence on attenuation. Our formalism also helps evaluate the influence of the inhomogeneity angle (the angle between the real and imaginary parts of the slowness vector) on the reflection coefficients. A nonzero inhomogeneity angle of the incident wave introduces additional terms into the PP- and PS-wave reflection coefficients, which makes conventional amplitude-variation-with-offset (AVO) analysis inadequate for strongly attenuative media. For instance, an incident P-wave with a nonzero inhomogeneity angle generates a mode-converted PS-wave at normal incidence, even if both half-spaces have a horizontal symmetry plane. The developed linearized solutions can be used in AVO inversion for highly attenuative (e.g., gas-sand and heavy-oil) reservoirs.


Geophysics ◽  
2006 ◽  
Vol 71 (1) ◽  
pp. D1-D13 ◽  
Author(s):  
Vladimir Grechka ◽  
Andrés Pech

Deviations of P-wave reflection traveltimes from a hyperbola, called the nonhyperbolic or quartic moveout, need to be handled properly while processing long-spread seismic data. As observed nonhyperbolic moveout is usually attributed to the presence of anisotropy, we devote our paper to deriving and analyzing a general formula that describes an azimuthally varying quartic moveout coefficient in a homogeneous, weakly anisotropic medium above a dipping, mildly curved reflector. To obtain the desired expression, we consistently linearize all quantities in small stiffness perturbations from a given isotropic solid. Our result incorporates all known weak-anisotropy approximations of the quartic moveout coefficient and extends them further to triclinic media. By comparing our approximation with nonhyperbolic moveout obtained from the ray-traced reflection traveltimes, we find that the former predicts azimuthal variations of the quartic moveout when its magnitude is less than 20% of the corresponding hyperbolic moveout term. We also study the influence of reflector curvature on nonhyperbolic moveout. It turns out that the curvature produces no quartic moveout in the reflector strike direction, where the anisotropy-induced moveout nonhyperbolicity is usually nonnegligible. Thus, the presence of nonhyperbolic moveout along the reflector strike might indicate effective anisotropy.


Geophysics ◽  
2004 ◽  
Vol 69 (3) ◽  
pp. 699-707 ◽  
Author(s):  
Andrés Pech ◽  
Ilya Tsvankin

Interpretation and inversion of azimuthally varying nonhyperbolic reflection moveout requires accounting for both velocity anisotropy and subsurface structure. Here, our previously derived exact expression for the quartic moveout coefficient A4 is applied to P‐wave reflections from a dipping interface overlaid by a medium of orthorhombic symmetry. The weak‐anisotropy approximaton for the coefficient A4 in a homogeneous orthorhombic layer is controlled by the anellipticity parameters η(1), η(2), and η(3), which are responsible for time processing of P‐wave data. If the dip plane of the reflector coincides with the vertical symmetry plane [x1, x3], A4 on the dip line is proportional to the in‐plane anellipticity parameter η(2) and always changes sign for a dip of 30○. The quartic coefficient on the strike line is a function of all three η–parameters, but for mild dips it is mostly governed by η(1)—the parameter defined in the incidence plane [x2, x3]. Whereas the magnitude of the dip line A4 typically becomes small for dips exceeding 45○, the nonhyperbolic moveout on the strike line may remain significant even for subvertical reflectors. The character of the azimuthal variation of A4 depends on reflector dip and is quite sensitive to the signs and relative magnitudes of η(1), η(2), and η(3). The analytic results and numerical modeling show that the azimuthal pattern of the quartic coefficient can contain multiple lobes, with one or two azimuths of vanishing A4 between the dip and strike directions. The strong influence of the anellipticity parameters on the azimuthally varying coefficient A4 suggests that nonhyperbolic moveout recorded in wide‐azimuth surveys can help to constrain the anisotropic velocity field. Since for typical orthorhombic models that describe naturally fractured reservoirs the parameters η(1,2,3) are closely related to the fracture density and infill, the results of azimuthal nonhyperbolic moveout analysis can also be used in reservoir characterization.


Geophysics ◽  
1991 ◽  
Vol 56 (6) ◽  
pp. 859-862 ◽  
Author(s):  
Robert R. Stewart

Multicomponent seismic recordings are currently being analyzed in an attempt to improve conventional P‐wave sections and to find and use rock properties associated with shear waves (e.g. Dohr, 1985; Danbom and Dominico, 1986). Mode‐converted (P-SV) waves hold a special interest for several reasons: They are generated by conventional P‐wave sources and have only a one‐way travel path as a shear wave through the typically low velocity and attenuative near surface. For a given frequency, they will have a shorter wavelength than the original P wave, and thus offer higher spatial resolution; this has been observed in several vertical seismic profiling (VSP) cases (e.g., Geis et al., 1990). However, for surface seismic data, converted waves are often found to be of lower frequency than P-P waves (e.g., Eaton et al., 1991).


Geophysics ◽  
2020 ◽  
Vol 85 (4) ◽  
pp. C107-C123
Author(s):  
Ivan Pšenčík ◽  
Bohuslav Růžek ◽  
Petr Jílek

We have developed a practical concept of compressional wave (P-wave) traveltime inversion in weakly to moderately anisotropic media of arbitrary symmetry and orientation. The concept provides sufficient freedom to explain and reproduce observed anisotropic seismic signatures to a high degree of accuracy. The key to this concept is the proposed P-wave anisotropy parameterization (A-parameters) that, together with the use of the weak-anisotropy approximation, leads to a significantly simplified theory. Here, as an example, we use a simple and transparent formula relating P-wave traveltimes to 15 P-wave A-parameters describing anisotropy of arbitrary symmetry. The formula is used in the inversion scheme, which does not require any a priori information about anisotropy symmetry and its orientation, and it is applicable to weak and moderate anisotropy. As the first step, we test applicability of the proposed scheme on a blind inversion of synthetic P-wave traveltimes generated in vertical seismic profile experiments in homogeneous models. Three models of varying anisotropy are used: tilted orthorhombic and triclinic models of moderate anisotropy (approximately 10%) and an orthorhombic model of strong anisotropy (>25%) with a horizontal plane of symmetry. In all cases, the inversion yields the complete set of 15 P-wave A-parameters, which make reconstruction of corresponding phase-velocity surfaces possible with high accuracy. The inversion scheme is robust with respect to noise and the source distribution pattern. Its quality depends on the angular illumination of the medium; we determine how the absence of nearly horizontal propagation directions affects inversion accuracy. The results of the inversion are applicable, for example, in migration or as a starting model for inversion methods, such as full-waveform inversion, if a model refinement is desired. A similar procedure could be designed for the inversion of S-wave traveltimes in anisotropic media of arbitrary symmetry.


Sign in / Sign up

Export Citation Format

Share Document