Source wavelet and local wave propagation effects on the amplitude-variation-with-offset response of thin-layer models: A physical modeling study

Geophysics ◽  
2017 ◽  
Vol 82 (4) ◽  
pp. N27-N41 ◽  
Author(s):  
Carlos A. M. Assis ◽  
Sérgio A. M. Oliveira ◽  
Roseane M. Misságia ◽  
Marco A. R. de Ceia

In target layers with thicknesses below the vertical seismic resolution as thin layers, the tuning effect/interference between the wave propagation modes may increase the challenge of doing amplitude-variation-with-offset (AVO) analysis because it is difficult to recover the primary PP amplitudes embedded in the data by further seismic data processing. Thus, we have investigated the importance of the primary PP reflections, locally P-SV converted waves, and internal multiple reflections in the amplitude response of two thin-layer seismic physical models. One model consists of a thin water layer embedded between two nylon plates, and another model with a thin acrylic layer surrounded by water. Numerical modeling using the reflectivity method was applied to analyze each wave propagation mode and the source waveform role in the experimental data. Before the experimental reflection data acquisition, we characterized two source and receiver piezoelectric transducer (PET) pairs: one with a circular plane face and the other with a semispherical face. We measured the source wavelet, its dominant frequency, and the PETs’ directivity pattern. Semispherical PETs were chosen to acquire common midpoint reflection data. Thereafter, a processing workflow was applied to remove linear events interfering with the target reflections and to correct amplitudes due to transmission losses, source/receiver directivity, and geometric spreading effects. Finally, we investigated the thin-layer targets near incidence angle amplitude and the AVO response. The results showed that the interference between the primary PP reflections and the locally converted shear waves may considerably affect the observed amplitude response. The source wavelet bandwidth appeared as a second-order effect, and the internal multiple reflections were practically negligible. These results suggested that in real data sets, it is important to investigate the wave propagation modes and source wavelet role in the amplitudes observed, before deciding the AVO analysis/inversion workflow that should be adopted.

Geophysics ◽  
1996 ◽  
Vol 61 (2) ◽  
pp. 520-528 ◽  
Author(s):  
Martin T. Widmaier ◽  
Sergei A. Shapiro ◽  
Peter Hubral

The reflection response of a seismic target is significantly affected by a thinly layered overburden, which creates velocity anisotropy and a transmission loss by scattering attenuation. These effects must be taken into account when imaging a target reflector and when inverting reflection coefficients. Describing scalar wave (i.e., acoustic wave or SH‐wave) propagation through a stack of thin layers by equivalent‐medium theory provides a simple generalized O’Doherty‐Anstey formula. This formulation is defined by a few statistical parameters that depend on the 1-D random fluctuations of the reflector overburden. The formula has been combined with well‐known target‐oriented and amplitude‐preserving migration/inversion algorithms and amplitude variation with offset (AVO) analysis procedures. The application of these combined procedures is demonstrated for SH‐waves in an elastic thinly‐layered medium. These techniques offer a suitable tool to compensate for the thin‐layer influence on traveltimes and amplitudes of seismic reflection data. The thin‐layer sensitive AVO parameters (zero‐offset amplitude and AVO gradient) of a target reflector can thus be better recovered.


Author(s):  
J. R. OCKENDON ◽  
R. H. TEW

This paper gives a brief overview of some configurations in which high-frequency wave propagation modelled by Helmholtz equation gives rise to solutions that vary rapidly across thin layers. The configurations are grouped according to their mathematical structure and tractability and one of them concerns a famous open problem of mathematical physics.


Geophysics ◽  
2019 ◽  
Vol 84 (4) ◽  
pp. B285-B297
Author(s):  
Elita Selmara De Abreu ◽  
John Patrick Castagna ◽  
Gabriel Gil

In detectable and isolated thin layers below seismic resolution, phase decomposition can theoretically be used to discriminate relatively high-impedance thin-layer responses from low-impedance reservoir responses. Phase decomposition can be used to isolate seismic amplitudes with a particular phase response or to decompose the seismic trace into symmetrical and antisymmetrical phase components. These components sum to form the original trace. Assuming zero-phase seismic data and normal American polarity, seismically thin layers that are high impedance relative to overlying and underlying half-spaces are seen on the [Formula: see text] phase component, whereas a relatively low-impedance thin layer will appear on the [Formula: see text] phase component. When such phase decomposition is applied to prestack attributes on a 2D line across a thin, 8 m thick, gas-saturated reservoir in the Western Canadian Sedimentary Basin of Alberta, Canada, amplitude-variation-with-angle is magnified on the [Formula: see text] phase component. The [Formula: see text] far-offset component allows the lateral extent of the reservoir to be better delineated. This amplification is also seen on the [Formula: see text] phase component of the gradient attribute. These results are corroborated by seismic modeling that indicates the same phase-component relationships for near- and far-angle stacks as are observed on the real data. Fluid substitution and seismic modeling indicate that, relative to full-phase data, the mixed-phase response observed in this study exhibits variations in fluid effects that are magnified and better observed at far angles on the [Formula: see text] phase component.


2015 ◽  
Vol 63 (3) ◽  
pp. 815-842 ◽  
Author(s):  
Qing-Xi Lin ◽  
Su-Ping Peng ◽  
Wen-Feng Du ◽  
Su-Zhen Shi ◽  
Jing-Wei Gou

2022 ◽  
Author(s):  
Lamees N. Abdulkareem ◽  

Amplitude variation with offset (AVO) analysis is an 1 efficient tool for hydrocarbon detection and identification of elastic rock properties and fluid types. It has been applied in the present study using reprocessed pre-stack 2D seismic data (1992, Caulerpa) from north-west of the Bonaparte Basin, Australia. The AVO response along the 2D pre-stack seismic data in the Laminaria High NW shelf of Australia was also investigated. Three hypotheses were suggested to investigate the AVO behaviour of the amplitude anomalies in which three different factors; fluid substitution, porosity and thickness (Wedge model) were tested. The AVO models with the synthetic gathers were analysed using log information to find which of these is the controlling parameter on the AVO analysis. AVO cross plots from the real pre-stack seismic data reveal AVO class IV (showing a negative intercept decreasing with offset). This result matches our modelled result of fluid substitution for the seismic synthetics. It is concluded that fluid substitution is the controlling parameter on the AVO analysis and therefore, the high amplitude anomaly on the seabed and the target horizon 9 is the result of changing the fluid content and the lithology along the target horizons. While changing the porosity has little effect on the amplitude variation with offset within the AVO cross plot. Finally, results from the wedge models show that a small change of thickness causes a change in the amplitude; however, this change in thickness gives a different AVO characteristic and a mismatch with the AVO result of the real 2D pre-stack seismic data. Therefore, a constant thin layer with changing fluids is more likely to be the cause of the high amplitude anomalies.


Geophysics ◽  
1998 ◽  
Vol 63 (4) ◽  
pp. 1177-1183 ◽  
Author(s):  
Anat Canning ◽  
Gerald H. F. Gardner

The acquisition patterns of 3-D surveys often have a significant effect on the results of dip moveout (DMO) or prestack migration. When the spatial distribution of input traces is irregular, results from DMO and migration are contaminated by artifacts. In many cases, the footprint of the acquisition patterns can be seen on the migrated section and may result in incorrect interpretation. This phenomena also has a very significant effect on the feasibility of conducting amplitude variation with offset (AVO) analysis after 3-D prestack migration or after 3-D DMO, and also may affect velocity analysis. We propose a simple enhancement to migration and DMO programs that acts to minimize acquisition artifacts.


Geophysics ◽  
2005 ◽  
Vol 70 (4) ◽  
pp. T57-T62 ◽  
Author(s):  
Chunling Wu ◽  
Jerry M. Harris ◽  
Kurt T. Nihei ◽  
Seiji Nakagawa

Within the context of seismic wave propagation, fractures can be described as thin layers or linear-slip interfaces. In this paper, numerical simulations of elastic wave propagation in a medium with a single fracture represented by these two models are performed by 2D finite-difference codes: a variable-grid isotropic code for the thin-layer model and a regular-grid anisotropic code for the linear-slip model. Numerical results show excellent agreement between the two models for wavefields away from the fracture; the only discrepancy between the two is the presence of a slow wave traveling primarily within the fracture fluid of the thin-layer model. The comparison of the computational cost shows that modeling of the linear-slip model is more efficient than that of the thin-layer model. This study demonstrates that the linear-slip model is an efficient and accurate modeling approach for the remote seismic characterization of fractures.


Geophysics ◽  
2010 ◽  
Vol 75 (2) ◽  
pp. C15-C23 ◽  
Author(s):  
Lyubov Skopintseva ◽  
Alexey Stovas

Amplitude-variation-with-offset (AVO) analysis is strongly dependent on interpretation of the estimated traveltime parameters. In practice, we can estimate two or three traveltime parameters that require interpretation within the families of two- or three-parameter velocity models, respectively. Increasing the number of model parameters improves the quality of overburden description and reduces errors in AVO analysis. We have analyzed the effect of two- and three-parameter velocity model interpretation for the overburden on AVO data and have developed error estimates in the reservoir parameters.


Geophysics ◽  
2017 ◽  
Vol 82 (1) ◽  
pp. N13-N25 ◽  
Author(s):  
Xinding Fang ◽  
Yingcai Zheng ◽  
Michael C. Fehler

Traditional amplitude variation with offset and azimuth (AVOAz) analysis for fracture characterization extracts fracture properties through analysis of reflection AVOAz to determine anisotropic parameters (e.g., Thomsen’s parameters) that are then related to fracture properties. The validity of this method relies on the basic assumption that a fractured unit can be viewed as an equivalent anisotropic medium. As a rule of thumb, this assumption is taken to be valid when the fracture spacing is less than [Formula: see text]. Under the effective medium assumption, diffractions from individual fractures destructively interfere and only specular reflections from boundaries of a fractured layer can be observed in seismic data. The effective medium theory has been widely used in fracture characterization, and its applicability has been validated through many field applications. However, through numerical simulations, we find that diffractions from fracture clusters can significantly distort the AVOAz signatures when a fracture system has irregular spacing even though the average fracture spacing is much smaller than a wavelength (e.g., [Formula: see text]). Contamination by diffractions from irregularly spaced fractures on reflections can substantially bias the fracture properties estimated from AVOAz analysis and may possibly lead to incorrect estimates of fracture properties. Additionally, through Monte Carlo simulations, we find that fracture spacing uncertainty inverted from amplitude variation with offset (AVO) analysis can be up to 10%–20% when fractures are not uniformly distributed, which should be the realistic state of fractures present in the earth. Also, AVOAz and AVO analysis gives more reliable estimates of fracture properties when reflections at the top of the fractured layer are used compared with those from the bottom of the layer.


Sign in / Sign up

Export Citation Format

Share Document