Effect of pressure on 3D distribution of P-wave velocity and attenuation in antigorite serpentinite

Geophysics ◽  
2017 ◽  
Vol 82 (4) ◽  
pp. WA33-WA43 ◽  
Author(s):  
Tomáš Svitek ◽  
Václav Vavryčuk ◽  
Tomáš Lokajíček ◽  
Matěj Petružálek ◽  
Hartmut Kern

We have developed a detailed study on the pressure dependence of P-wave velocities and amplitudes on a spherical sample of antigorite serpentinite from Val Malenco, Northern Italy. Measurements were done at room temperature and hydrostatic pressures up to 400 MPa in a pressure vessel with oil as a pressure medium. The transducer/sample assembly allows simultaneous velocity and amplitude measurements on the spherical sample in 132 independent directions. Three significant directions of the foliated sample were selected to study changes of the directional dependence (anisotropy) of velocity, amplitude, and [Formula: see text]-factor with increasing pressure. Remarkable differences are observed between the changes of velocity and attenuation anisotropy as pressure is increased. Although the velocity anisotropy is quite stable through all pressure levels, the attenuation anisotropy and the [Formula: see text]-factor vary significantly in magnitude and orientation. The variations are probably caused by the closing of microcracks due to acting hydrostatic pressure, so the contact conditions between individual minerals consolidate and the transmitting energy is less attenuating.

2020 ◽  
pp. 1-62 ◽  
Author(s):  
Jamal Ahmadov ◽  
Mehdi Mokhtari

Tuscaloosa Marine Shale (TMS) formation is a clay- and organic-rich emerging shale play with a considerable amount of hydrocarbon resources. Despite the substantial potential, there have been only a few wells drilled and produced in the formation over the recent years. The analyzed TMS samples contain an average of 50 wt% total clay, 27 wt% quartz and 14 wt% calcite and the mineralogy varies considerably over the small intervals. The high amount of clay leads to pronounced anisotropy and the frequent changes in mineralogy result in the heterogeneity of the formation. We studied the compressional (VP) and shear-wave (VS) velocities to evaluate the degree of anisotropy and heterogeneity, which impact hydraulic fracture growth, borehole instabilities, and subsurface imaging. The ultrasonic measurements of P- and S-wave velocities from five TMS wells are the best fit to the linear relationship with R2 = 0.84 in the least-squares criteria. We observed that TMS S-wave velocities are relatively lower when compared to the established velocity relationships. Most of the velocity data in bedding-normal direction lie outside constant VP/VS lines of 1.6–1.8, a region typical of most organic-rich shale plays. For all of the studied TMS samples, the S-wave velocity anisotropy exhibits higher values than P-wave velocity anisotropy. In the samples in which the composition is dominated by either calcite or quartz minerals, mineralogy controls the velocities and VP/VS ratios to a great extent. Additionally, the organic content and maturity account for the velocity behavior in the samples in which the mineralogical composition fails to do so. The results provide further insights into TMS Formation evaluation and contribute to a better understanding of the heterogeneity and anisotropy of the play.


Geophysics ◽  
2020 ◽  
Vol 85 (2) ◽  
pp. MR97-MR105 ◽  
Author(s):  
Junxin Guo ◽  
Boris Gurevich ◽  
Da Shuai

Frequency-dependent P-wave anisotropy due to scattering often occurs in fractured formations, whereas the corresponding theoretical study is lacking. Hence, based on a newly developed P-wave scattering model, we have studied the frequency-dependent P-wave scattering anisotropy in rocks with aligned fractures. To describe P-wave scattering anisotropy, we develop the corresponding anisotropy parameters similar to those for elastic anisotropy. Our results indicate that the P-wave velocity anisotropy parameters [Formula: see text] and [Formula: see text] do not change with frequency monotonically, which is different from that caused by wave-induced fluid flow. Fluid saturation in fractures can greatly decrease the P-wave velocity anisotropy, whose effects depend on the ratio of the fluid bulk modulus to the fracture aspect ratio. The P-wave exhibits elliptical anisotropy for the dry fracture case at low frequencies, but anelliptical anisotropy for the case with fluid-filled fractures. The P-wave attenuation anisotropy parameters [Formula: see text] and [Formula: see text] vanish in the low- and high-frequency limits but reach their maxima at the characteristic frequency when the P-wavelength is close to the fracture length. The influence of fluid on the P-wave attenuation anisotropy is similar to that on the velocity anisotropy. To further analyze frequency-dependent P-wave scattering anisotropy, theoretical predictions are compared with experimental results, which indicate reasonable agreement between them.


2020 ◽  
Author(s):  
Jerome Fortin ◽  
Cedric Bailly ◽  
Mathilde Adelinet ◽  
Youri Hamon

<p>Linking ultrasonic measurements made on samples, with sonic logs and seismic subsurface data, is a key challenge for the understanding of carbonate reservoirs. To deal with this problem, we investigate the elastic properties of dry lacustrine carbonates. At one study site, we perform a seismic refraction survey (100 Hz), as well as sonic (54 kHz) and ultrasonic (250 kHz) measurements directly on outcrop and ultrasonic measurements on samples (500 kHz). By comparing the median of each data set, we show that the P wave velocity decreases from laboratory to seismic scale. Nevertheless, the median of the sonic measurements acquired on outcrop surfaces seems to fit with the seismic data, meaning that sonic acquisition may be representative of seismic scale. To explain the variations due to upscaling, we relate the concept of representative elementary volume with the wavelength of each scale of study. Indeed, with upscaling, the wavelength varies from millimetric to pluri-metric. This change of scale allows us to conclude that the behavior of P wave velocity is due to different geological features (matrix porosity, cracks, and fractures) related to the different wavelengths used. Based on effective medium theory, we quantify the pore aspect ratio at sample scale and the crack/fracture density at outcrop and seismic scales using a multiscale representative elementary volume concept. Results show that the matrix porosity that controls the ultrasonic P wave velocities is progressively lost with upscaling, implying that crack and fracture porosity impacts sonic and seismic P wave velocities, a result of paramount importance for seismic interpretation based on deterministic approaches.</p><p>Bailly, C., Fortin, J., Adelinet, M., & Hamon, Y. (2019). Upscaling of elastic properties in carbonates: A modeling approach based on a multiscale geophysical data set. Journal of Geophysical Research: Solid Earth, 124. https://doi.org/10.1029/2019JB018391</p>


Geophysics ◽  
2007 ◽  
Vol 72 (1) ◽  
pp. D9-D19 ◽  
Author(s):  
Yaping Zhu ◽  
Ilya Tsvankin

Orthorhombic models are often used in the interpretation of azimuthally varying seismic signatures recorded over fractured reservoirs. Here, we develop an analytic framework for describing the attenuation coefficients in orthorhombic media with orthorhombic attenuation (i.e., the symmetry of both the real and imaginary parts of the stiffness tensor is identical) under the assumption of homogeneous wave propagation. The analogous form of the Christoffel equation in the symmetry planes of orthorhombic and VTI (transversely isotropic with a vertical symmetry axis) media helps to obtain the symmetry-plane attenuation coefficients by adapting the existing VTI equations. To take full advantage of this equivalence with transverse isotropy, we introduce a parameter set similar to the VTI attenuation-anisotropy parameters [Formula: see text], [Formula: see text], and [Formula: see text]. This notation, based on the same principle as Tsvankin’s velocity-anisotropy parameters for orthorhombic media, leads to concise linearized equations for thesymmetry-plane attenuation coefficients of all three modes (P, [Formula: see text], and [Formula: see text]).The attenuation-anisotropy parameters also allow us to simplify the P-wave attenuation coefficient [Formula: see text] outside the symmetry planes under the assumptions of small attenuation and weak velocity and attenuation anisotropy. The approximate coefficient [Formula: see text] has the same form as the linearized P-wave phase-velocity function, with the velocity parameters [Formula: see text] and [Formula: see text] replaced by the attenuation parameters [Formula: see text] and [Formula: see text]. The exact attenuation coefficient, however, also depends on the velocity-anisotropy parameters, while the body-wave velocities are almost unperturbed by the presence of attenuation. The reduction in the number of parameters responsible for the P-wave attenuation and the simple approximation for the coefficient [Formula: see text] provide a basis for inverting P-wave attenuation measurements from orthorhombic media. The attenuation processing must be preceded by anisotropic velocity analysis that can be performed (in the absence of pronounced velocity dispersion) using existing algorithms for nonattenuative media.


Geophysics ◽  
1990 ◽  
Vol 55 (4) ◽  
pp. 470-479 ◽  
Author(s):  
D. F. Winterstein ◽  
B. N. P. Paulsson

Crosshole and vertical seismic profile (VST) data made possible accurate characterization of the elastic properties, including noticeable velocity anisotropy, of a near‐surface late Tertiary shale formation. Shear‐wave splitting was obvious in both crosshole and VSP data. In crosshole data, two orthologonally polarrized shear (S) waves arrived 19 ms in the uppermost 246 ft (75 m). Vertically traveling S waves of the VSP separated about 10 ms in the uppermost 300 ft (90 m) but remained at nearly constant separation below that level. A transversely isotropic model, which incorporates a rapid increase in S-wave velocities with depth but slow increase in P-wave velocities, closely fits the data over most of the measured interval. Elastic constants of the transvesely isotropic model show spherical P- and [Formula: see text]wave velocity surfaces but an ellipsoidal [Formula: see text]wave surface with a ratio of major to minor axes of 1.15. The magnitude of this S-wave anisotropy is consistent with and lends credence to S-wave anisotropy magnitudes deduced less directly from data of many sedimentary basins.


Geophysics ◽  
2002 ◽  
Vol 67 (1) ◽  
pp. 241-253 ◽  
Author(s):  
Helmut Dürrast ◽  
P. N. J. Rasolofosaon ◽  
Siegfried Siegesmund

Fractures are an important fabric element in many tight gas reservoirs because they provide the necessary channels for fluid flow in rocks which usually have low matrix permeabilities. Several sandstone samples of such a reservoir type were chosen for a combined study of rock fabric elements and petrophysical properties. Geological investigations of the distribution and orientation of the fractures and sedimentary layering were performed. In addition, laboratory measurements were carried out to determine the directional dependence of the permeability and P‐wave velocities. Higher permeability values are generally in the plane of the nearly horizontal sedimentary layering with regard to the core axis. With the occurrence of subvertical fractures, however, the highest permeabilities were determined to be parallel to the core axis. Compressional wave velocities were measured on spherical samples in more than 100 directions to get the VP symmetry without prior assumptions. Below 50 MPa confining pressure, all samples show a monoclinic symmetry of the P wave velocity distribution, caused by sedimentary layering, fractures, and crossbedding. At higher confining pressure, sedimentary layering is approximately the only effective fabric element, resulting in a more transverse isotropic VP symmetry. Using the geological‐petrophysical model introduced here, the complex symmetry of the VP distributions can only be explained by the rock fabric elements. Furthermore, water saturation increases the velocities and decreases the anisotropy but does not change VP symmetry. This indicates that at this state, all fabric elements, including the fractures, have an influence on P‐wave velocity distribution.


Geophysics ◽  
2009 ◽  
Vol 74 (4) ◽  
pp. W13-W33 ◽  
Author(s):  
Jorg V. Herwanger ◽  
Steve A. Horne

Seismic technology has been used successfully to detect geomechanically induced signals in repeated seismic experiments from more than a dozen fields. To explain geomechanically induced time-lapse (4D) seismic signals, we use results from coupled reservoir and geomechanical modeling. The coupled simulation yields the 3D distribution, over time, of subsurface deformation and triaxial stress state in the reservoir and the surrounding rock. Predicted changes in triaxial stress state are then used to compute changes in anisotropic P- and S-wave velocities employing a stress sensitive rock-physics transform. We predict increasing vertical P-wave velocities inside the reservoir, accompanied by a negative change in P-wave anisotropy [Formula: see text]. Conversely, in the overburden and underburden, we have predicted a slowdown in vertical P-wave velocity and an increase in horizontal velocities. This corresponds to positive change in P-wave anisotropy [Formula: see text]. A stress sensitive rock-physics transform that predicts anisotropic velocity change from triaxial stress change offers an explanation for the apparent difference in stress sensitivity of P-wave velocity between the overburden and the reservoir. In a modeled example, the vertical velocity speedup per unit increase in vertical stress [Formula: see text] is more than twice as large in the overburden as in the reservoir. The difference is caused by the influence of the stress path [Formula: see text] (i.e., the ratio [Formula: see text] between change in minimum horizontal effective stress [Formula: see text] and change in vertical effective stress [Formula: see text]) on vertical velocity. The modeling suggests that time-lapse seismic technology has the potential to become a monitoring tool for stress path, a critical parameter in failure geomechanics.


Geophysics ◽  
2011 ◽  
Vol 76 (3) ◽  
pp. E59-E68 ◽  
Author(s):  
Hua Wang ◽  
Guo Tao

Propagating wavefields from monopole, dipole, and quadrupole acoustic logging-while-drilling (LWD) tools in very slow formations have been studied using the discrete wavenumber integration method. These studies examine the responses of monopole and dipole systems at different source frequencies in a very slow surrounding formation, and the responses of a quadrupole system operating at a low source frequency in a slow formation with different S-wave velocities. Analyses are conducted of coherence-velocity/slowness relationships (semblance spectra) in the time domain and of the dispersion characteristics of these waveform signals from acoustic LWD array receivers. These analyses demonstrate that, if the acoustic LWD tool is centralized properly and is operating at low frequencies (below 3 kHz), a monopole system can measure P-wave velocity by means of a “leaky” P-wave for very slow formations. Also, for very slow formations a dipole system can measure the P-wave velocity via a leaky P-wave and can measure the S-wave velocity from a formation flexural wave. With a quadrupole system, however, the lower frequency limit (cutoff frequency) of the drill-collar interference wave would decrease to 5 kHz and might no longer be neglected if the surrounding formation becomes a very slow formation, with S-wave velocities at approximately 500 m/s.


Geophysics ◽  
2013 ◽  
Vol 78 (3) ◽  
pp. C25-C31 ◽  
Author(s):  
Thomas E. Blum ◽  
Ludmila Adam ◽  
Kasper van Wijk

We evaluated a laser-based noncontacting method to measure the elastic anisotropy of horizontal shale cores. Whereas conventional transducer data contained an ambiguity between phase and group velocity measurements, small laser source and receiver footprints on typical core samples ensured group velocity information in our laboratory measurements. With a single dense acquisition of group velocity versus group angle on a horizontal core, we estimated the elastic constants [Formula: see text], [Formula: see text], and [Formula: see text] directly from ultrasonic waveforms, and [Formula: see text] from a least-squares fit of modeled to measured group velocities. The observed significant P-wave velocity and attenuation anisotropy in these dry shales were almost surely exaggerated by delamination of clay platelets and microfracturing, but provided an illustration of the new laboratory measurement technique. Although challenges lay ahead to measure preserved shales at in situ conditions in the lab, we evaluated the fundamental advantages of the proposed method over conventional transducer measurements.


Geophysics ◽  
2002 ◽  
Vol 67 (2) ◽  
pp. 405-412 ◽  
Author(s):  
Manika Prasad

Shallow water flows and over‐pressured zones are a major hazard in deepwater drilling projects. Their detection prior to drilling would save millions of dollars in lost drilling costs. I have investigated the sensitivity of seismic methods for this purpose. Using P‐wave information alone can be ambiguous, because a drop in P‐wave velocity (Vp) can be caused both by overpressure and by presence of gas. The ratio of P‐wave velocity to S‐wave velocity (Vp/Vs), which increases with overpressure and decreases with gas saturation, can help differentiate between the two cases. Since P‐wave velocity in a suspension is slightly below that of the suspending fluid and Vs=0, Vp/Vs and Poisson's ratio must increase exponentially as a load‐bearing sediment approaches a state of suspension. On the other hand, presence of gas will also decrease Vp but Vs will remain unaffected and Vp/Vs will decrease. Analyses of ultrasonic P‐ and S‐wave velocities in sands show that the Vp/Vs ratio, especially at low effective pressures, decreases rapidly with pressure. At very low pressures, Vp/Vs values can be as large as 100 and higher. Above pressures greater than 2 MPa, it plateaus and does not change much with pressure. There is significant change in signal amplitudes and frequency of shear waves below 1 MPa. The current ultrasonic data shows that Vp/Vs values can be invaluable indicators of low differential pressures.


Sign in / Sign up

Export Citation Format

Share Document