Attenuation estimation from sonic logging waveforms combining seismic interferometry and common-midpoint approach

Geophysics ◽  
2018 ◽  
Vol 83 (1) ◽  
pp. WA21-WA35 ◽  
Author(s):  
Jun Matsushima ◽  
Mohammed Y. Ali ◽  
Fateh Bouchaala

Although attenuation estimation methods using sonic logging waveforms provide the highest resolution among seismic methods and enable us to characterize in great detail the attenuation properties of subsurface rocks, such attenuation estimation methods are not used routinely, indicating that there is still room for improvement. To further improve the performance of an existing modified median frequency shift (MMFS) method, we have developed a new algorithm by combining seismic interferometry (SI) and the common-midpoint (CMP) approach. Redatuming a transmitter position by applying SI can shorten the transmitter-receiver distance, leading not only to higher depth resolution but also to a lower signal-to-noise ratio (S/N) of the attenuation profiles. To compensate for the decrease in the S/N, we used the redundancy of overlapping receivers at each receiver level in a sonic logging measurement using the multireceiver tool; we improved the S/N by stacking the redatumed sonic logging waveforms. Then, based on the CMP approach, we constructed the workflow to estimate attenuation using redatumed sonic logging waveforms. We applied our method to numerical and real sonic logging waveforms to investigate its applicability in comparison with that of the existing MMFS method in terms of depth resolution and S/N. The results of numerical experiments on noisy data and velocity heterogeneity models demonstrate a trade-off relationship between the depth resolution and stability, which can be controlled by selecting transmitter-receiver pairs. Finally, the application of our method to real sonic logging data demonstrates the advantages in terms of resolution and the disadvantages in stability in comparison with the existing MMFS method. Similar to the numerical results, we found a trade-off relationship between such advantages and disadvantages, which can be controlled by selecting transmitter-receiver pairs.

Geophysics ◽  
2013 ◽  
Vol 78 (5) ◽  
pp. D339-D353 ◽  
Author(s):  
Hiroyuki Suzuki ◽  
Jun Matsushima

Application of seismic attenuation estimation using sonic waveform data is limited because the estimation methods have not yet been fully developed. Although the median frequency shift method is considered to be effective and robust compared to the conventional spectral ratio method, we demonstrated that the median frequency shift methods strongly depend on reference data under lower signal-to-noise ratios. We modified an existing median frequency shift method not to depend on arbitrarily choosing a reference value and to quantify the uncertainties in attenuation estimation. Furthermore, we implied the optimum selection of receiver pairs used for more stable attenuation analysis. Our numerical experiments supported the advantage of the proposed method. Although our main findings by applying the proposed methods in methane hydrate-bearing sediments are almost consistent with past field sonic logging measurements, we find some differences in the magnitude of attenuation values compared to existing sonic attenuation measurements and discuss various possible factors. We believe that more stable and reliable attenuation results can lead to clarifying various factors affecting attenuation estimation, such as the effect of scattering, near-field effects, and source-coupling effects. Furthermore, we emphasized the importance of scattering effect caused by the heterogeneity of the formation and demonstrated the limitation of characterizing the 1D heterogeneity using the sonic logging data spatially sampled at 0.15 m to adequately estimate the effect of scattering attenuation.


2021 ◽  
Vol 18 (6) ◽  
pp. 890-907
Author(s):  
Andrey Bakulin ◽  
Ilya Silvestrov ◽  
Maxim Protasov

Abstract Modern land seismic data are typically acquired using high spatial trace density with small source and receiver arrays or point sources and sensors. These datasets are challenging to process due to their massive size and relatively low signal-to-noise ratio caused by scattered near-surface noise. Therefore, prestack data enhancement becomes a critical step in the processing flow. Nonlinear beamforming had proved very powerful for 3D land data. However, it requires computationally intensive estimations of local coherency on dense spatial/temporal grids in 3D prestack data cubes. We present an analysis of various estimation methods focusing on a trade-off between computational efficiency and enhanced data quality. We demonstrate that the popular sequential «2 + 2 + 1» scheme is highly efficient but may lead to unreliable estimation and poor enhancement for data with a low signal-to-noise ratio. We propose an alternative algorithm called «dip + curvatures» that remains stable for such challenging data. We supplement the new strategy with an additional interpolation procedure in spatial and time dimensions to reduce the computational cost. We demonstrate that the «dip + curvatures» strategy coupled with an interpolation scheme approaches the «2 + 2 + 1» method's efficiency while it significantly outperforms it in enhanced data quality. We conclude that the new algorithm strikes a practical trade-off between the performance of the algorithm and the quality of the enhanced data. These conclusions are supported by synthetic and real 3D land seismic data from challenging desert environments with complex near surface.


Author(s):  
Yongxin Zhao ◽  
Zheng Kuang ◽  
Ying Wang ◽  
Lei Li ◽  
Xiaozeng Yang

Abstract Last two decades, the studies on microRNAs (miRNAs) and the numbers of annotated miRNAs in plants and animals have surged. Herein, we reviewed the current progress and challenges of miRNA annotation in plants. Via the comparison of plant and animal miRNAs, we pinpointed out the difficulties on plant miRNA annotation and proposed potential solutions. In terms of recalling the history of methods and criteria in plant miRNA annotation, we detailed how the major progresses made and evolved. By collecting and categorizing bioinformatics tools for plant miRNA annotation, we surveyed their advantages and disadvantages, especially for ones with the principle of mimicking the miRNA biogenesis pathway by parsing deeply sequenced small RNA (sRNA) libraries. In addition, we summarized all available databases hosting plant miRNAs, and posted the potential optimization solutions such as how to increase the signal-to-noise ratio (SNR) in these databases. Finally, we discussed the challenges and perspectives of plant miRNA annotations, and indicated the possibilities offered by an all-in-one tool and platform according to the integration of artificial intelligence.


2021 ◽  
Author(s):  
Di Zhao ◽  
Weijie Tan ◽  
Zhongliang Deng ◽  
Gang Li

Abstract In this paper, we present a low complexity beamspace direction-of-arrival (DOA) estimation method for uniform circular array (UCA), which is based on the single measurement vectors (SMVs) via vectorization of sparse covariance matrix. In the proposed method, we rstly transform the signal model of UCA to that of virtual uniform linear array (ULA) in beamspace domain using the beamspace transformation (BT). Subsequently, by applying the vectorization operator on the virtual ULA-like array signal model, a new dimension-reduction array signal model consists of SMVs based on Khatri-Rao (KR) product is derived. And then, the DOA estimation is converted to the convex optimization problem. Finally, simulations are carried out to verify the eectiveness of the proposed method, the results show that without knowledge of the signal number, the proposed method not only has higher DOA resolution than subspace-based methods in low signal-to-noise ratio (SNR), but also has much lower computational complexity comparing other sparse-like DOA estimation methods.


Author(s):  
Gouw Tjie Liong

Non destructive testing on piles can be divided into two main categories. The first category is to find out the integrity of the piles, such as pile integrity testing (PIT) and sonic logging. The second category is to find out the pile capacity, such as dynamic load testing/pile driving analysis. Since the early 1990s, the application of the tests was brought into practice and gained its popularity in Indonesia. However, the basic theory behind the testing has not been widely disseminated. This study tries to elaborate the first category of the testing, i.e. the pile integrity testing and sonic logging. The basic theory, the advantages and disadvantages, the application, the limitation and the interpretation of those techniques shall be discussed. Comparison on case studies of those testing methods also shall be given. 


Author(s):  
Ismail El Ouargui ◽  
Said Safi ◽  
Miloud Frikel

The resolution of a Direction of Arrival (DOA) estimation algorithm is determined based on its capability to resolve two closely spaced signals. In this paper, authors present and discuss the minimum number of array elements needed for the resolution of nearby sources in several DOA estimation methods. In the real world, the informative signals are corrupted by Additive White Gaussian Noise (AWGN). Thus, a higher signal-to-noise ratio (SNR) offers a better resolution. Therefore, we show the performance of each method by applying the algorithms in different noise level environments.


2021 ◽  
Author(s):  
Remi Dallmayr ◽  
Johannes Freitag ◽  
Maria Hörhold ◽  
Thomas Laepple ◽  
Johannes Lemburg ◽  
...  

<p>The validity of any glaciological paleo proxy used to interpret climate records is based on the level of understanding of their transfer from the atmosphere into the ice sheet and their recording in the snowpack. Large spatial noise in snow properties is observed, as the wind constantly redistributes the deposited snow at the surface routed by the local topography. To increase the signal-to-noise ratio and getting a representative estimate of snow properties with respect to the high spatial variability, a large number of snow profiles is needed. However, the classical way of obtaining profiles via snow-pits is time and energy-consuming, and thus unfavourable for large surface sampling programs. In response, we present a dual-tube technique to sample the upper metre of the snowpack at a variable depth resolution with high efficiency. The developed device is robust and avoids contact with the samples by exhibiting two tubes attached alongside each other in order to (1) contain the snow core sample and (2) to access the bottom of the sample, respectively. We demonstrate the performance of the technique through two case studies in East Antarctica where we analysed the variability of water isotopes at a 100 m and 5 km spatial scales.</p>


Author(s):  
О.Г. ПОНОМАРЕВ ◽  
М. АСАФ

Рассмотрена проблема коррекции искажений OFDM-сигнала, вызванных смещением частоты дискретизации сигнала в приемном и передающем устройствах системы сотовой связи пятого поколения. Предлагаемый метод компенсации смещения частоты дискретизации основывается на прямой коррекции искажений, вносимых в передаваемый сигнал наличием смещения, и не предполагает какой-либо оценки величины смещения. Метод предназначен для коррекции сигналов в восходящем канале системы сотовой связи пятого поколения и основывается на использовании референсных сигналов, рекомендованных стандартами 3GPP. Результаты численного моделирования показали, что использование предлагаемого метода позволяет повысить эффективность передачи данных по многолучевому радиоканалу более чем на 15% в широком диапазоне значений отношения сигнал/шум. 5G-NR, CP-OFDM, synchronization, sample clock offset, PUSCH. О The paper investigates the issue of sampling clock offset ( SCO) in the fifth generation new radio systems. Due to the imperfect SCO estimation methods, the correction methods relying on the SCO estimation are not perfect, so the proposed method directly corrects the effect of SCO without using any kind of estimation method. Our method is designed to correct the signals in the physical uplink shared channel (PUSCH). The method uses reference signals as recommended by the 3rd generation partnership project (3GPP) standards. The results of the numerical simulation show that the use of the proposed method increases the efficiency of data transmission over the multipath radio channel by more than 15% in a wide range of signal-to-noise ratio values.


Sign in / Sign up

Export Citation Format

Share Document