Automatic traveltime inversion via sparse decomposition of seismic data

Geophysics ◽  
2018 ◽  
Vol 83 (6) ◽  
pp. R659-R668 ◽  
Author(s):  
Bo Feng ◽  
Huazhong Wang ◽  
Ru-Shan Wu

We have developed an automatic traveltime inversion (ATI) method to estimate the macrovelocity model from reflection seismic data. First, we extract the kinematic information (i.e., source/receiver ray parameters, traveltime, and source/receiver coordinates) of locally coherent events using a sparse-decomposition method. And then we evaluate a new strategy to calculate the reflection traveltime residual based on a ray-intersection criterion, eliminating the influence of seismic amplitude to the estimation of the traveltime residual. The velocity model can be updated iteratively by minimizing the traveltime residual functional with a gradient-based method. To obtain a smooth gradient free of artifacts, we first estimate the high-wavenumber components of the functional gradient with a total variation (TV) regularization method and then subtract it from the full gradient. Because the reflection traveltime residual calculation and velocity update are fully automated procedures, the proposed traveltime inversion method is referred to as ATI. We determine with 2D synthetic and field examples that ATI does not need a good starting model. Furthermore, it requires neither low-frequency seismic data nor long-offset acquisition. Nevertheless, the proposed traveltime residual calculation strategy is only valid for the 2D case, which limits its 3D applicability. We explore a possible solution for 3D extension.

Geophysics ◽  
2002 ◽  
Vol 67 (6) ◽  
pp. 1877-1885 ◽  
Author(s):  
Xin‐Quan Ma

A new prestack inversion algorithm has been developed to simultaneously estimate acoustic and shear impedances from P‐wave reflection seismic data. The algorithm uses a global optimization procedure in the form of simulated annealing. The goal of optimization is to find a global minimum of the objective function, which includes the misfit between synthetic and observed prestack seismic data. During the iterative inversion process, the acoustic and shear impedance models are randomly perturbed, and the synthetic seismic data are calculated and compared with the observed seismic data. To increase stability, constraints have been built into the inversion algorithm, using the low‐frequency impedance and background Vs/Vp models. The inversion method has been successfully applied to synthetic and field data examples to produce acoustic and shear impedances comparable to log data of similar bandwidth. The estimated acoustic and shear impedances can be combined to derive other elastic parameters, which may be used for identifying of lithology and fluid content of reservoirs.


Geophysics ◽  
2016 ◽  
Vol 81 (5) ◽  
pp. R261-R274 ◽  
Author(s):  
Yi Luo ◽  
Yue Ma ◽  
Yan Wu ◽  
Hongwei Liu ◽  
Lei Cao

Many previously published wave-equation-based methods, which attempt to automatically invert traveltime or kinematic information in seismic data or migrated gathers for smooth velocities, suffer a common and severe problem — the inversions are involuntarily and unconsciously hijacked by amplitude information. To overcome this problem, we have developed a new wave-equation-based traveltime inversion methodology, referred to as full-traveltime (i.e., fully dependent on traveltime) inversion (FTI), to automatically estimate a kinematically accurate velocity model from seismic data. The key idea of FTI is to make the inversion fully dependent on traveltime information, and thus prevent amplitude interference during inversion. Under the assumption that velocity perturbations cause only traveltime changes, we have derived the FTI method in the data and image domains, which are applicable to transmitted arrivals and reflected waves, respectively. FTI does not require an accurate initial velocity model or low-frequency seismic data. Synthetic and field data tests demonstrate that FTI produces satisfactory inversion results, even when using constant velocity models as initials.


2014 ◽  
Vol 1 (2) ◽  
pp. 1757-1802
Author(s):  
C. Huang ◽  
L. Dong ◽  
Y. Liu ◽  
B. Chi

Abstract. Low frequency is a key issue to reduce the nonlinearity of elastic full waveform inversion. Hence, the lack of low frequency in recorded seismic data is one of the most challenging problems in elastic full waveform inversion. Theoretical derivations and numerical analysis are presented in this paper to show that envelope operator can retrieve strong low frequency modulation signal demodulated in multicomponent data, no matter what the frequency bands of the data is. With the benefit of such low frequency information, we use elastic envelope of multicomponent data to construct the objective function and present an elastic envelope inversion method to recover the long-wavelength components of the subsurface model, especially for the S-wave velocity model. Numerical tests using synthetic data for the Marmousi-II model prove the effectiveness of the proposed elastic envelope inversion method, especially when low frequency is missing in multicomponent data and when initial model is far from the true model. The elastic envelope can reduce the nonlinearity of inversion and can provide an excellent starting model.


2021 ◽  
Vol 225 (2) ◽  
pp. 1020-1031
Author(s):  
Huachen Yang ◽  
Jianzhong Zhang ◽  
Kai Ren ◽  
Changbo Wang

SUMMARY A non-iterative first-arrival traveltime inversion method (NFTI) is proposed for building smooth velocity models using seismic diving waves observed on irregular surface. The new ray and traveltime equations of diving waves propagating in smooth media with undulant observation surface are deduced. According to the proposed ray and traveltime equations, an analytical formula for determining the location of the diving-wave turning points is then derived. Taking the influence of rough topography on first-arrival traveltimes into account, the new equations for calculating the velocities at turning points are established. Based on these equations, a method is proposed to construct subsurface velocity models from the observation surface downward to the bottom using the first-arrival traveltimes in common offset gathers. Tests on smooth velocity models with rugged topography verify the validity of the established equations, and the superiority of the proposed NFTI. The limitation of the proposed method is shown by an abruptly-varying velocity model example. Finally, the NFTI is applied to solve the static correction problem of the field seismic data acquired in a mountain area in the western China. The results confirm the effectivity of the proposed NFTI.


Geophysics ◽  
2009 ◽  
Vol 74 (6) ◽  
pp. WCC27-WCC36 ◽  
Author(s):  
Yu Zhang ◽  
Daoliu Wang

We propose a new wave-equation inversion method that mainly depends on the traveltime information of the recorded seismic data. Unlike the conventional method, we first apply a [Formula: see text] transform to the seismic data to form the delayed-shot seismic record, back propagate the transformed data, and then invert the velocity model by maximizing the wavefield energy around the shooting time at the source locations. Data fitting is not enforced during the inversion, so the optimized velocity model is obtained by best focusing the source energy after a back propagation. Therefore, inversion accuracy depends only on the traveltime information embedded in the seismic data. This method may overcome some practical issues of waveform inversion; in particular, it relaxes the dependency of the seismic data amplitudes and the source wavelet.


2020 ◽  
Author(s):  
Maiara Gonçalves ◽  
Emilson Leite

<p>Reflections of seismic waves are strongly distorted by the presence of complex geological structures (e.g. salt bodies) and their vertical resolution is usually of the order of a few tens of meters, imposing limitations in the construction of subsurface models. One way to improve the reliability of such models is to integrate reflection seismic data with other types of geophysical data, such as gravimetric data, since the latter provide an additional link to map geological structures that exhibit density contrasts with respect to their surroundings. In a previous study, we developed a cooperative inversion method of 2D post-stack and migrated reflection seismic data, and gravimetric data. Using that inversion method, we minimize two problems: (1) the problem of the distortion of reflection seismic data due to the presence of complex geological bodies and (2) the problem of the greater ambiguity and the commonly lower resolution of the models obtained only from gravimetric anomalies. The method incorporates a technique to decrease the number of variables and is solved by optimization of the gravity inverse problem, thus reducing computing time. The objective function of cooperative inversion was minimized using three different methods of optimization: (1) simplex, (2) simulated annealing, and (3) genetic algorithm. However, these optimization methods have internal parameters which affect the convergence rate and objective function values. These parameters are usually chosen accordingly to previous references. Although the usage of these standard values is widely accepted, the best values to assure effectiveness and stability of convergence are case-dependent. In the present study, we propose a sensitivity analysis on the internal parameters of the optimization methods for the previously presented cooperative inversion. First, we developed the standard case, which is an inversion performed using all parameters at their standard values. Then, the sensitivity analysis is performed by running multiple inversions, each one with a set of parameters. Each set is obtained by modifying the value of a single parameter either for a lower or for a higher value, keeping all other values at their standard values. The results obtained by each setting are compared to the results of the standard case. The compared results are both the number of evaluations and the final value of the objective function. We then classify parameters accordingly to their relative influence on the optimization processes. The sensitivity analysis provides insight into the best practices to deal with object-based cooperative inversion schemes. The technique was tested using a synthetic model calculated from the Benchmark BP 2004, representing an offshore sedimentary basin containing salt bodies and small hydrocarbons reservoirs.</p>


Geophysics ◽  
1992 ◽  
Vol 57 (1) ◽  
pp. 9-14 ◽  
Author(s):  
Gérard C. Herman

A nonlinear inversion method is presented, especially suited for the determination of global velocity models. In a certain sense, it can be considered as a generalization of methods based on traveltimes of reflections, with the requirement of accurately having to determine traveltimes replaced by the (less stringent and less subjective) requirement of having to define time windows around main reflections (or composite reflections) of interest. It is based on an error norm, related to the phase of the wavefield, which is directly computed from wavefield measurements. Therefore, the cumbersome step of interpreting arrivals and measuring arrival times is avoided. The method is applied to the reconstruction of a depth‐dependent global velocity model from a set of plane‐wave responses and is compared to other methods. Despite the fact that the new error norm only makes use of data having a temporal bandwidth of a few Hz, its behavior is very similar to the behavior of the error norm used in traveltime inversion.


2017 ◽  
Vol 5 (4) ◽  
pp. T523-T530
Author(s):  
Ehsan Zabihi Naeini ◽  
Mark Sams

Broadband reprocessed seismic data from the North West Shelf of Australia were inverted using wavelets estimated with a conventional approach. The inversion method applied was a facies-based inversion, in which the low-frequency model is a product of the inversion process itself, constrained by facies-dependent input trends, the resultant facies distribution, and the match to the seismic. The results identified the presence of a gas reservoir that had recently been confirmed through drilling. The reservoir is thin, with up to 15 ms of maximum thickness. The bandwidth of the seismic data is approximately 5–70 Hz, and the well data used to extract the wavelet used in the inversion are only 400 ms long. As such, there was little control on the lowest frequencies of the wavelet. Different wavelets were subsequently estimated using a variety of new techniques that attempt to address the limitations of short well-log segments and low-frequency seismic. The revised inversion showed greater gas-sand continuity and an extension of the reservoir at one flank. Noise-free synthetic examples indicate that thin-bed delineation can depend on the accuracy of the low-frequency content of the wavelets used for inversion. Underestimation of the low-frequency contents can result in missing thin beds, whereas underestimation of high frequencies can introduce false thin beds. Therefore, it is very important to correctly capture the full frequency content of the seismic data in terms of the amplitude and phase spectra of the estimated wavelets, which subsequently leads to a more accurate thin-bed reservoir characterization through inversion.


Sign in / Sign up

Export Citation Format

Share Document