Mitigating the cycle-skipping of full-waveform inversion by random gradient sampling

Geophysics ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. R493-R507
Author(s):  
Jizhong Yang ◽  
Yunyue Elita Li ◽  
Yuzhu Liu ◽  
Yanwen Wei ◽  
Haohuan Fu

Full-waveform inversion (FWI) is a highly nonlinear and nonconvex problem. To mitigate the dependence of FWI on the quality of starting model and on the low frequencies in the data, we apply the gradient sampling algorithm (GSA) introduced for nonsmooth, nonconvex optimization problems to FWI. The search space is hugely expanded to have more freedom to accommodate large velocity errors in the starting model. The original implementation of GSA requires explicit calculation of the gradient at each sampled vector, which is prohibitively expensive. Based on the observation that a slight perturbation in the velocity model causes a small spatial shift of the wavefield, we have approximated the sampled gradients by crosscorrelating the space-shifted source- and receiver-side wavefields. Theoretical derivation suggests that the two wavefields should be shifted in the same direction to obtain reasonable low-wavenumber updates. The final descent search direction is obtained by summing all the shifted gradients. For practical implementation, we only take one random space shift at each time step during the gradient calculation. This simplification provides an efficient realization in which the computational costs and memory requirements are the same as conventional FWI. Multiple numerical examples demonstrate that the proposed method alleviates the cycle-skipping problem of conventional FWI when starting from very crude initial velocity models without low-frequency data.

2019 ◽  
Vol 38 (3) ◽  
pp. 197-203 ◽  
Author(s):  
Jizhong Yang ◽  
Yunyue Elita Li ◽  
Yanwen Wei ◽  
Haohuan Fu ◽  
Yuzhu Liu

Full-waveform inversion (FWI) has the great potential to retrieve high-fidelity subsurface models, with the constraint that the traveltime difference between the predicted data and the observed data should be less than half of the period at the lowest available frequency. If the above constraint is not satisfied, FWI will suffer from severe convergence problems and may get stuck in erroneous local minimum. To mitigate the dependence of FWI on the quality of the starting model, we apply the robust gradient sampling algorithm (GSA) on nonsmooth, nonconvex optimization problems to FWI. The original implementation of GSA requires explicit calculation of the gradient at each sampling point. When combined with FWI, this procedure involves tremendous computational costs for calculating the forward- and backward-propagated wavefields at each sampled velocity model within the vicinity of the current model estimate. Through numerical analyses, we find that the gradients corresponding to slightly perturbed velocity models can be approximated by space shifting the gradient obtained from the current velocity model. By randomly choosing one space shift at each time step during the gradient calculation, the computational cost is thus the same as conventional FWI. Numerical examples based on the 2004 BP model demonstrate that the proposed method can provide much better results than conventional FWI when starting from a crude initial velocity model.


Geophysics ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. R793-R804 ◽  
Author(s):  
Debanjan Datta ◽  
Mrinal K. Sen ◽  
Faqi Liu ◽  
Scott Morton

A good starting model is imperative in full-waveform inversion (FWI) because it solves a least-squares inversion problem using a local gradient-based optimization method. A suboptimal starting model can result in cycle skipping leading to poor convergence and incorrect estimation of subsurface properties. This problem is especially crucial for salt models because the strong velocity contrasts create substantial time shifts in the modeled seismogram. Incorrect estimation of salt bodies leads to velocity inaccuracies in the sediments because the least-squares gradient aims to reduce traveltime differences without considering the sharp velocity jump between sediments and salt. We have developed a technique to estimate velocity models containing salt bodies using a combination of global and local optimization techniques. To stabilize the global optimization algorithm and keep it computationally tractable, we reduce the number of model parameters by using sparse parameterization formulations. The sparse formulation represents sediments using a set of interfaces and velocities across them, whereas a set of ellipses represents the salt body. We use very fast simulated annealing (VFSA) to minimize the misfit between the observed and synthetic data and estimate an optimal model in the sparsely parameterized space. The VFSA inverted model is then used as a starting model in FWI in which the sediments and salt body are updated in the least-squares sense. We partition model updates into sediment and salt updates in which the sediments are updated like conventional FWI, whereas the shape of the salt is updated by taking the zero crossing of an evolving level set surface. Our algorithm is tested on two 2D synthetic salt models, namely, the Sigsbee 2A model and a modified SEG Advanced Modeling Program (SEAM) Phase I model while fixing the top of the salt. We determine the efficiency of the VFSA inversion and imaging improvements from the level set FWI approach and evaluate a few sources of uncertainty in the estimation of salt shapes.


Geophysics ◽  
2018 ◽  
Vol 83 (1) ◽  
pp. A13-A20 ◽  
Author(s):  
Zhiguang Xue ◽  
Junzhe Sun ◽  
Sergey Fomel ◽  
Tieyuan Zhu

The calculation of the gradient in full-waveform inversion (FWI) usually involves crosscorrelating the forward-propagated source wavefield and the back-propagated data residual wavefield at each time step. In the real earth, propagating waves are typically attenuated due to the viscoelasticity, which results in an attenuated gradient for FWI. Replacing the attenuated true gradient with a [Formula: see text]-compensated gradient can accelerate the convergence rate of the inversion process. We have used a phase-dispersion and an amplitude-loss decoupled constant-[Formula: see text] wave equation to formulate a viscoacoustic FWI. We used this wave equation to generate a [Formula: see text]-compensated gradient, which recovers amplitudes while preserving the correct kinematics. We construct an exact adjoint operator in a discretized form using the low-rank wave extrapolation technique, and we implement the gradient compensation by reversing the sign of the amplitude-loss term in the forward and adjoint operators. This leads to a [Formula: see text]-dependent gradient preconditioning method. Using numerical tests with synthetic data, we demonstrate that the proposed viscoacoustic FWI using a constant-[Formula: see text] wave equation is capable of producing high-quality velocity models, and our [Formula: see text]-compensated gradient accelerates its convergence rate.


2020 ◽  
Vol 222 (1) ◽  
pp. 610-627 ◽  
Author(s):  
Peng Guo ◽  
Gerhard Visser ◽  
Erdinc Saygin

SUMMARY Seismic full waveform inversion (FWI) is a state-of-the-art technique for estimating subsurface physical models from recorded seismic waveform, but its application requires care because of high non-linearity and non-uniqueness. The final outcome of global convergence from conventional FWI using local gradient information relies on an informative starting model. Bayesian inference using Markov chain Monte Carlo (MCMC) sampling is able to remove such dependence, by a direct extensive search of the model space. We use a Bayesian trans-dimensional MCMC seismic FWI method with a parsimonious dipping layer parametrization, to invert for subsurface velocity models from pre-stack seismic shot gathers that contain mainly reflections. For the synthetic study, we use a simple four-layer model and a modified Marmousi model. A recently collected multichannel off-shore seismic reflection data set, from the Lord Howe Rise (LHR) in the east of Australia, is used for the field data test. The trans-dimensional FWI method is able to provide model ensembles for describing posterior distribution, when the dipping-layer model assumption satisfies the observed data. The model assumption requires narrow models, thus only near-offset data to be used. We use model stitching with lateral and depth constraints to create larger 2-D models from many adjacent overlapping submodel inversions. The inverted 2-D velocity model from the Bayesian inference can then be used as a starting model for the gradient-based FWI, from which we are able to obtain high-resolution subsurface velocity models, as demonstrated using the synthetic data. However, lacking far-offset data limits the constraints for the low-wavenumber part of the velocity model, making the inversion highly non-unique. We found it challenging to apply the dipping-layer based Bayesian FWI to the field data. The approximations in the source wavelet and forward modelling physics increase the multimodality of the posterior distribution; the sampled velocity models clearly show the trade-off between interface depth and velocity. Numerical examples using the synthetic and field data indicate that trans-dimensional FWI has the potential for inverting earth models from reflection waveform. However, a sparse model parametrization and far offset constraints are required, especially for field application.


Geophysics ◽  
2008 ◽  
Vol 73 (5) ◽  
pp. VE101-VE117 ◽  
Author(s):  
Hafedh Ben-Hadj-Ali ◽  
Stéphane Operto ◽  
Jean Virieux

We assessed 3D frequency-domain (FD) acoustic full-waveform inversion (FWI) data as a tool to develop high-resolution velocity models from low-frequency global-offset data. The inverse problem was posed as a classic least-squares optimization problem solved with a steepest-descent method. Inversion was applied to a few discrete frequencies, allowing management of a limited subset of the 3D data volume. The forward problem was solved with a finite-difference frequency-domain method based on a massively parallel direct solver, allowing efficient multiple-shot simulations. The inversion code was fully parallelized for distributed-memory platforms, taking advantage of a domain decomposition of the modeled wavefields performed by the direct solver. After validation on simple synthetic tests, FWI was applied to two targets (channel and thrust system) of the 3D SEG/EAGE overthrust model, corresponding to 3D domains of [Formula: see text] and [Formula: see text], respectively. The maximum inverted frequencies are 15 and [Formula: see text] for the two applications. A maximum of 30 dual-core biprocessor nodes with [Formula: see text] of shared memory per node were used for the second target. The main structures were imaged successfully at a resolution scale consistent with the inverted frequencies. Our study confirms the feasibility of 3D frequency-domain FWI of global-offset data on large distributed-memory platforms to develop high-resolution velocity models. These high-velocity models may provide accurate macromodels for wave-equation prestack depth migration.


Geophysics ◽  
2019 ◽  
Vol 84 (1) ◽  
pp. R1-R10 ◽  
Author(s):  
Zhendong Zhang ◽  
Tariq Alkhalifah ◽  
Zedong Wu ◽  
Yike Liu ◽  
Bin He ◽  
...  

Full-waveform inversion (FWI) is an attractive technique due to its ability to build high-resolution velocity models. Conventional amplitude-matching FWI approaches remain challenging because the simplified computational physics used does not fully represent all wave phenomena in the earth. Because the earth is attenuating, a sample-by-sample fitting of the amplitude may not be feasible in practice. We have developed a normalized nonzero-lag crosscorrelataion-based elastic FWI algorithm to maximize the similarity of the calculated and observed data. We use the first-order elastic-wave equation to simulate the propagation of seismic waves in the earth. Our proposed objective function emphasizes the matching of the phases of the events in the calculated and observed data, and thus, it is more immune to inaccuracies in the initial model and the difference between the true and modeled physics. The normalization term can compensate the energy loss in the far offsets because of geometric spreading and avoid a bias in estimation toward extreme values in the observed data. We develop a polynomial-type weighting function and evaluate an approach to determine the optimal time lag. We use a synthetic elastic Marmousi model and the BigSky field data set to verify the effectiveness of the proposed method. To suppress the short-wavelength artifacts in the estimated S-wave velocity and noise in the field data, we apply a Laplacian regularization and a total variation constraint on the synthetic and field data examples, respectively.


2021 ◽  
Vol 40 (5) ◽  
pp. 324-334
Author(s):  
Rongxin Huang ◽  
Zhigang Zhang ◽  
Zedong Wu ◽  
Zhiyuan Wei ◽  
Jiawei Mei ◽  
...  

Seismic imaging using full-wavefield data that includes primary reflections, transmitted waves, and their multiples has been the holy grail for generations of geophysicists. To be able to use the full-wavefield data effectively requires a forward-modeling process to generate full-wavefield data, an inversion scheme to minimize the difference between modeled and recorded data, and, more importantly, an accurate velocity model to correctly propagate and collapse energy of different wave modes. All of these elements have been embedded in the framework of full-waveform inversion (FWI) since it was proposed three decades ago. However, for a long time, the application of FWI did not find its way into the domain of full-wavefield imaging, mostly owing to the lack of data sets with good constraints to ensure the convergence of inversion, the required compute power to handle large data sets and extend the inversion frequency to the bandwidth needed for imaging, and, most significantly, stable FWI algorithms that could work with different data types in different geologic settings. Recently, with the advancement of high-performance computing and progress in FWI algorithms at tackling issues such as cycle skipping and amplitude mismatch, FWI has found success using different data types in a variety of geologic settings, providing some of the most accurate velocity models for generating significantly improved migration images. Here, we take a step further to modify the FWI workflow to output the subsurface image or reflectivity directly, potentially eliminating the need to go through the time-consuming conventional seismic imaging process that involves preprocessing, velocity model building, and migration. Compared with a conventional migration image, the reflectivity image directly output from FWI often provides additional structural information with better illumination and higher signal-to-noise ratio naturally as a result of many iterations of least-squares fitting of the full-wavefield data.


2017 ◽  
Vol 36 (12) ◽  
pp. 1033-1036 ◽  
Author(s):  
Mathias Louboutin ◽  
Philipp Witte ◽  
Michael Lange ◽  
Navjot Kukreja ◽  
Fabio Luporini ◽  
...  

Since its reintroduction by Pratt (1999) , full-waveform inversion (FWI) has gained a lot of attention in geophysical exploration because of its ability to build high-resolution velocity models more or less automatically in areas of complex geology. While there is an extensive and growing literature on the topic, publications focus mostly on technical aspects, making this topic inaccessible for a broader audience due to the lack of simple introductory resources for newcomers to computational geophysics. We will accomplish this by providing a hands-on walkthrough of FWI using Devito ( Lange et al., 2016 ), a system based on domain-specific languages that automatically generates code for time-domain finite differences.


Sign in / Sign up

Export Citation Format

Share Document