A k-mean characteristic function for optimizing short- and long-term-average-ratio-based detection of microseismic events
Event detection is an essential component of microseismic data analysis. This process is typically carried out using a short- and long-term-average-ratio (STA/LTA) method, which is simple and computationally efficient but often yields inconsistent results for noisy data sets. We have aimed to optimize the performance of the STA/LTA method by testing different input forms of 3C waveform data and different characteristic functions (CFs), including a proposed [Formula: see text]-mean CF. These tests are evaluated using receiver operating characteristic (ROC) analysis and are compared based on synthetic and field data examples. Our analysis indicates that the STA/LTA method using a [Formula: see text]-mean CF improves the detection sensitivity and yields more robust event detection on noisy data sets than some previous approaches. In addition, microseismic events are detected efficiently on field data examples using the same detection threshold obtained from the ROC analysis on synthetic data examples. We recommend the use of the Youden index based on ROC analysis using a training subset, extracted from the continuous data, to further improve the detection threshold for field microseismic data.