scholarly journals Determination of a stress-dependent rock-physics model using anisotropic time-lapse tomographic inversion

Geophysics ◽  
2020 ◽  
Vol 85 (4) ◽  
pp. C141-C152
Author(s):  
Nicolas Mastio ◽  
Pierre Thore ◽  
Marianne Conin ◽  
Guillaume Caumon

In the petroleum industry, time-lapse (4D) studies are commonly used for reservoir monitoring, but they are also useful to perform risk assessment for potential overburden deformations (e.g., well shearing, cap-rock integrity). Although complex anisotropic velocity changes are predicted in the overburden by geomechanical studies, conventional time-lapse inversion workflows only deal with vertical velocity changes. To retrieve the geomechanically induced anisotropy, we have adopted a reflection traveltime tomography method coupled with a time-shift estimation algorithm of prestack data of the baseline and monitor simultaneously. For the 2D approach, we parameterize the anisotropy using five coefficients, enough to cover any type of anisotropy. Before applying the workflow to a real data set, we first study a synthetic data set based on the real data set and include velocity variations between baseline and monitor found in the literature (vertical P-wave velocity decrease in the cap rock and isotropic P-wave velocity change in the reservoir). On the synthetics, we measure the angular ray coverage necessary to retrieve the target anisotropy and observe that the retrieved anisotropies depend on the offset range. Based on a synthetic experiment, we believe that the acquisition of the real case study is suitable for performing tomographic inversion. The anisotropic velocity changes obtained on three inlines separated by 375 m are consistent and show a strong positive anomaly in the cap rock along the 45° direction (the [Formula: see text] parameter in Thomsen notation), whereas the vertical velocity change is surprisingly almost negligible. We adopt a rock-physics explanation compatible with these observations and geologic considerations: a reactivation of water-filled subvertical cracks.

Geophysics ◽  
2010 ◽  
Vol 75 (4) ◽  
pp. U29-U38 ◽  
Author(s):  
Andreas Kjelsrud Evensen ◽  
Martin Landrø

Most seismic studies of changes in traveltimes are of a qualitative nature and a major challenge in four dimensions is to use the information contained in time shifts to quantify the nature of velocity changes in the subsurface layers. We propose a 4D tomographic inversion method that uses time shifts from prestack seismic data to estimate parameters describing the 2D velocity field after changes have occurred. Prestack data allow for the usage of many offsets, thus increasing the information input for the inversion. The velocity changes are parameterized by a chosen number of Gaussian functions in two dimensions and weighted least-squares inversion is used to estimate the parameters describing these functions. We have found that the parameters describing the position and shape of the Gaussian velocity anomalies can be estimated with this method for simple synthetic cases. For more complex cases with overlapping Gaussian functions, resolution of the parameters can be difficult and in these cases our recommendation is to find the best fit for a simple smooth anomaly to a more complex real world. The method is tested on a real data set from a [Formula: see text] injection project above the Sleipner field in the North Sea, where quantification of changes is important for monitoring purposes. We have found that the noise levels in prestack traveltime data are on the high side for large-scale analysis; however, we estimate reasonable [Formula: see text] layer thickness and velocity compared to previous work in a nearby area.


Geophysics ◽  
2009 ◽  
Vol 74 (4) ◽  
pp. W13-W33 ◽  
Author(s):  
Jorg V. Herwanger ◽  
Steve A. Horne

Seismic technology has been used successfully to detect geomechanically induced signals in repeated seismic experiments from more than a dozen fields. To explain geomechanically induced time-lapse (4D) seismic signals, we use results from coupled reservoir and geomechanical modeling. The coupled simulation yields the 3D distribution, over time, of subsurface deformation and triaxial stress state in the reservoir and the surrounding rock. Predicted changes in triaxial stress state are then used to compute changes in anisotropic P- and S-wave velocities employing a stress sensitive rock-physics transform. We predict increasing vertical P-wave velocities inside the reservoir, accompanied by a negative change in P-wave anisotropy [Formula: see text]. Conversely, in the overburden and underburden, we have predicted a slowdown in vertical P-wave velocity and an increase in horizontal velocities. This corresponds to positive change in P-wave anisotropy [Formula: see text]. A stress sensitive rock-physics transform that predicts anisotropic velocity change from triaxial stress change offers an explanation for the apparent difference in stress sensitivity of P-wave velocity between the overburden and the reservoir. In a modeled example, the vertical velocity speedup per unit increase in vertical stress [Formula: see text] is more than twice as large in the overburden as in the reservoir. The difference is caused by the influence of the stress path [Formula: see text] (i.e., the ratio [Formula: see text] between change in minimum horizontal effective stress [Formula: see text] and change in vertical effective stress [Formula: see text]) on vertical velocity. The modeling suggests that time-lapse seismic technology has the potential to become a monitoring tool for stress path, a critical parameter in failure geomechanics.


Geophysics ◽  
2018 ◽  
Vol 83 (3) ◽  
pp. B105-B117 ◽  
Author(s):  
Julien Cotton ◽  
Hervé Chauris ◽  
Eric Forgues ◽  
Paul Hardouin

In 4D seismic, the velocity model used for imaging and reservoir characterization can change as production from the reservoir progresses. This is particularly true for heavy oil reservoirs stimulated by steam injection. In the context of sparse and low-fold seismic acquisitions, conventional migration velocity analyses can be inadequate because of a poorly and irregularly sampled offset dimension. We update the velocity model in the context of daily acquisitions with buried sources and receivers. The main objective is to demonstrate that subtle time-lapse effects can be detected over the calendar time on onshore sparse acquisitions. We develop a modified version of the conventional prestack time migration to detect velocity changes obtained after crosscorrelation of the base and monitor surveys. This technique is applied on a heavy oil real data set from the Netherlands and reveals how the steam diffuses over time within the reservoir.


Geophysics ◽  
2006 ◽  
Vol 71 (3) ◽  
pp. R43-R48 ◽  
Author(s):  
Arild Buland ◽  
Youness El Ouair

A new, fast inversion approach for time-lapse seismic data is developed where the uncertainty of the inversion results is an integral part of the solution. The inversion method estimates changes in the elastic material properties of a reservoir because of production of hydrocarbons, including uncertainty bounds on these estimates. The changes in elastic properties then can be related to changes in hydrocarbon saturation and reservoir pressure by using rock-physics relations. The inversion operates directly on the difference between a repeat survey and a baseline survey. This is advantageous with respect to the uncertainty calculation, because an estimate of the seismic uncertainty can be obtained directly from the difference data in zones not affected by production. The method is formulated in a Bayesian setting, and the solution is represented by explicit expressions for the posterior expectation and the covariance of the elastic parameter changes. The explicit analytical form of the posterior distribution provides a computationally fast inversion method. Results of the applied approach to a real data set from the Norne field are consistent with the expected effects of water flushing because of water injection.


Geophysics ◽  
2016 ◽  
Vol 81 (4) ◽  
pp. M55-M69 ◽  
Author(s):  
Bastien Dupuy ◽  
Stéphane Garambois ◽  
Amir Asnaashari ◽  
Hadi M. Balhareth ◽  
Martin Landrø ◽  
...  

The estimation of quantitative rock physics properties is of great importance for reservoir characterization and monitoring in [Formula: see text] storage or enhanced oil recovery as an example. We have combined the high-resolution results of full-waveform inversion (FWI) methods with rock physics inversion. Because we consider a generic and dynamic rock physics model, our method is applicable to most kinds of rocks for a wide range of frequencies. The first step allows determination of viscoelastic effective properties, i.e., quantitative seismic attributes, whereas the rock physics inversion estimates rock physics properties (porosity, solid frame moduli, fluid phase properties, or saturation). This two-step workflow is applied to time-lapse synthetic and field cases. The sensitivity tests that we had previously carried out showed that it can be crucial to use multiparameter inputs to accurately recover fluid saturations and fluid properties. However, due to the limited data availability and difficulties in getting reliable multiparameter FWI results, we are limited to acoustic FWI results. The synthetic tests are conclusive even if they are favorable cases. For the first time-lapse fluid substitution synthetic case, we first characterize the rock frame parameters on the baseline model using P-wave velocity estimations obtained by acoustic FWI. Then, we obtain an accurate estimation of fluid bulk modulus from the time-lapse P-wave velocity. In the Marmousi synthetic case, the rock frame properties are accurately recovered for the baseline model, whereas the gas saturation change in the monitor model is not estimated correctly. On the field data example (time-lapse monitoring of an underground blowout in the North Sea), the estimation of rock frame properties gives results on a relatively narrow range, and we use this estimation as a starting model for the gas saturation inversion. We have found that the estimation of the gas saturation is not accurate enough, and the use of attenuation data is then required. However, the uncertainty on the estimation of baseline rock frame properties is not critical to monitor gas saturation changes.


Author(s):  
A. Ogbamikhumi ◽  
T. Tralagba ◽  
E. E. Osagiede

Field ‘K’ is a mature field in the coastal swamp onshore Niger delta, which has been producing since 1960. As a huge producing field with some potential for further sustainable production, field monitoring is therefore important in the identification of areas of unproduced hydrocarbon. This can be achieved by comparing production data with the corresponding changes in acoustic impedance observed in the maps generated from base survey (initial 3D seismic) and monitor seismic survey (4D seismic) across the field. This will enable the 4D seismic data set to be used for mapping reservoir details such as advancing water front and un-swept zones. The availability of good quality onshore time-lapse seismic data for Field ‘K’ acquired in 1987 and 2002 provided the opportunity to evaluate the effect of changes in reservoir fluid saturations on time-lapse amplitudes. Rock physics modelling and fluid substitution studies on well logs were carried out, and acoustic impedance change in the reservoir was estimated to be in the range of 0.25% to about 8%. Changes in reservoir fluid saturations were confirmed with time-lapse amplitudes within the crest area of the reservoir structure where reservoir porosity is 0.25%. In this paper, we demonstrated the use of repeat Seismic to delineate swept zones and areas hit with water override in a producing onshore reservoir.


2020 ◽  
Author(s):  
Jerome Fortin ◽  
Cedric Bailly ◽  
Mathilde Adelinet ◽  
Youri Hamon

<p>Linking ultrasonic measurements made on samples, with sonic logs and seismic subsurface data, is a key challenge for the understanding of carbonate reservoirs. To deal with this problem, we investigate the elastic properties of dry lacustrine carbonates. At one study site, we perform a seismic refraction survey (100 Hz), as well as sonic (54 kHz) and ultrasonic (250 kHz) measurements directly on outcrop and ultrasonic measurements on samples (500 kHz). By comparing the median of each data set, we show that the P wave velocity decreases from laboratory to seismic scale. Nevertheless, the median of the sonic measurements acquired on outcrop surfaces seems to fit with the seismic data, meaning that sonic acquisition may be representative of seismic scale. To explain the variations due to upscaling, we relate the concept of representative elementary volume with the wavelength of each scale of study. Indeed, with upscaling, the wavelength varies from millimetric to pluri-metric. This change of scale allows us to conclude that the behavior of P wave velocity is due to different geological features (matrix porosity, cracks, and fractures) related to the different wavelengths used. Based on effective medium theory, we quantify the pore aspect ratio at sample scale and the crack/fracture density at outcrop and seismic scales using a multiscale representative elementary volume concept. Results show that the matrix porosity that controls the ultrasonic P wave velocities is progressively lost with upscaling, implying that crack and fracture porosity impacts sonic and seismic P wave velocities, a result of paramount importance for seismic interpretation based on deterministic approaches.</p><p>Bailly, C., Fortin, J., Adelinet, M., & Hamon, Y. (2019). Upscaling of elastic properties in carbonates: A modeling approach based on a multiscale geophysical data set. Journal of Geophysical Research: Solid Earth, 124. https://doi.org/10.1029/2019JB018391</p>


Geophysics ◽  
2018 ◽  
Vol 83 (4) ◽  
pp. M41-M48 ◽  
Author(s):  
Hongwei Liu ◽  
Mustafa Naser Al-Ali

The ideal approach for continuous reservoir monitoring allows generation of fast and accurate images to cope with the massive data sets acquired for such a task. Conventionally, rigorous depth-oriented velocity-estimation methods are performed to produce sufficiently accurate velocity models. Unlike the traditional way, the target-oriented imaging technology based on the common-focus point (CFP) theory can be an alternative for continuous reservoir monitoring. The solution is based on a robust data-driven iterative operator updating strategy without deriving a detailed velocity model. The same focusing operator is applied on successive 3D seismic data sets for the first time to generate efficient and accurate 4D target-oriented seismic stacked images from time-lapse field seismic data sets acquired in a [Formula: see text] injection project in Saudi Arabia. Using the focusing operator, target-oriented prestack angle domain common-image gathers (ADCIGs) could be derived to perform amplitude-versus-angle analysis. To preserve the amplitude information in the ADCIGs, an amplitude-balancing factor is applied by embedding a synthetic data set using the real acquisition geometry to remove the geometry imprint artifact. Applying the CFP-based target-oriented imaging to time-lapse data sets revealed changes at the reservoir level in the poststack and prestack time-lapse signals, which is consistent with the [Formula: see text] injection history and rock physics.


Sign in / Sign up

Export Citation Format

Share Document