scholarly journals Estimation of rock physics properties from seismic attributes — Part 2: Applications

Geophysics ◽  
2016 ◽  
Vol 81 (4) ◽  
pp. M55-M69 ◽  
Author(s):  
Bastien Dupuy ◽  
Stéphane Garambois ◽  
Amir Asnaashari ◽  
Hadi M. Balhareth ◽  
Martin Landrø ◽  
...  

The estimation of quantitative rock physics properties is of great importance for reservoir characterization and monitoring in [Formula: see text] storage or enhanced oil recovery as an example. We have combined the high-resolution results of full-waveform inversion (FWI) methods with rock physics inversion. Because we consider a generic and dynamic rock physics model, our method is applicable to most kinds of rocks for a wide range of frequencies. The first step allows determination of viscoelastic effective properties, i.e., quantitative seismic attributes, whereas the rock physics inversion estimates rock physics properties (porosity, solid frame moduli, fluid phase properties, or saturation). This two-step workflow is applied to time-lapse synthetic and field cases. The sensitivity tests that we had previously carried out showed that it can be crucial to use multiparameter inputs to accurately recover fluid saturations and fluid properties. However, due to the limited data availability and difficulties in getting reliable multiparameter FWI results, we are limited to acoustic FWI results. The synthetic tests are conclusive even if they are favorable cases. For the first time-lapse fluid substitution synthetic case, we first characterize the rock frame parameters on the baseline model using P-wave velocity estimations obtained by acoustic FWI. Then, we obtain an accurate estimation of fluid bulk modulus from the time-lapse P-wave velocity. In the Marmousi synthetic case, the rock frame properties are accurately recovered for the baseline model, whereas the gas saturation change in the monitor model is not estimated correctly. On the field data example (time-lapse monitoring of an underground blowout in the North Sea), the estimation of rock frame properties gives results on a relatively narrow range, and we use this estimation as a starting model for the gas saturation inversion. We have found that the estimation of the gas saturation is not accurate enough, and the use of attenuation data is then required. However, the uncertainty on the estimation of baseline rock frame properties is not critical to monitor gas saturation changes.

2019 ◽  
Vol 38 (10) ◽  
pp. 762-769
Author(s):  
Patrick Connolly

Reflectivities of elastic properties can be expressed as a sum of the reflectivities of P-wave velocity, S-wave velocity, and density, as can the amplitude-variation-with-offset (AVO) parameters, intercept, gradient, and curvature. This common format allows elastic property reflectivities to be expressed as a sum of AVO parameters. Most AVO studies are conducted using a two-term approximation, so it is helpful to reduce the three-term expressions for elastic reflectivities to two by assuming a relationship between P-wave velocity and density. Reduced to two AVO components, elastic property reflectivities can be represented as vectors on intercept-gradient crossplots. Normalizing the lengths of the vectors allows them to serve as basis vectors such that the position of any point in intercept-gradient space can be inferred directly from changes in elastic properties. This provides a direct link between properties commonly used in rock physics and attributes that can be measured from seismic data. The theory is best exploited by constructing new seismic data sets from combinations of intercept and gradient data at various projection angles. Elastic property reflectivity theory can be transferred to the impedance domain to aid in the analysis of well data to help inform the choice of projection angles. Because of the effects of gradient measurement errors, seismic projection angles are unlikely to be the same as theoretical angles or angles derived from well-log analysis, so seismic data will need to be scanned through a range of angles to find the optimum.


Geophysics ◽  
2009 ◽  
Vol 74 (4) ◽  
pp. W13-W33 ◽  
Author(s):  
Jorg V. Herwanger ◽  
Steve A. Horne

Seismic technology has been used successfully to detect geomechanically induced signals in repeated seismic experiments from more than a dozen fields. To explain geomechanically induced time-lapse (4D) seismic signals, we use results from coupled reservoir and geomechanical modeling. The coupled simulation yields the 3D distribution, over time, of subsurface deformation and triaxial stress state in the reservoir and the surrounding rock. Predicted changes in triaxial stress state are then used to compute changes in anisotropic P- and S-wave velocities employing a stress sensitive rock-physics transform. We predict increasing vertical P-wave velocities inside the reservoir, accompanied by a negative change in P-wave anisotropy [Formula: see text]. Conversely, in the overburden and underburden, we have predicted a slowdown in vertical P-wave velocity and an increase in horizontal velocities. This corresponds to positive change in P-wave anisotropy [Formula: see text]. A stress sensitive rock-physics transform that predicts anisotropic velocity change from triaxial stress change offers an explanation for the apparent difference in stress sensitivity of P-wave velocity between the overburden and the reservoir. In a modeled example, the vertical velocity speedup per unit increase in vertical stress [Formula: see text] is more than twice as large in the overburden as in the reservoir. The difference is caused by the influence of the stress path [Formula: see text] (i.e., the ratio [Formula: see text] between change in minimum horizontal effective stress [Formula: see text] and change in vertical effective stress [Formula: see text]) on vertical velocity. The modeling suggests that time-lapse seismic technology has the potential to become a monitoring tool for stress path, a critical parameter in failure geomechanics.


2017 ◽  
Vol 5 (4) ◽  
pp. SS23-SS42 ◽  
Author(s):  
Bastien Dupuy ◽  
Anouar Romdhane ◽  
Peder Eliasson ◽  
Etor Querendez ◽  
Hong Yan ◽  
...  

Reliable quantification of carbon dioxide ([Formula: see text]) properties and saturation is crucial in the monitoring of [Formula: see text] underground storage projects. We have focused on quantitative seismic characterization of [Formula: see text] at the Sleipner storage pilot site. We evaluate a methodology combining high-resolution seismic waveform tomography, with uncertainty quantification and rock physics inversion. We use full-waveform inversion (FWI) to provide high-resolution estimates of P-wave velocity [Formula: see text] and perform an evaluation of the reliability of the derived model based on posterior covariance matrix analysis. To get realistic estimates of [Formula: see text] saturation, we implement advanced rock physics models taking into account effective fluid phase theory and patchy saturation. We determine through sensitivity tests that the estimation of [Formula: see text] saturation is possible even when using only the P-wave velocity as input. After a characterization of rock frame properties based on log data prior to the [Formula: see text] injection at Sleipner, we apply our two-step methodology. The FWI result provides clear indications of the injected [Formula: see text] plume being observed as low-velocity zones corresponding to thin [Formula: see text] filled layers. Several tests, varying the rock physics model and [Formula: see text] properties, are then performed to estimate [Formula: see text] saturation. The results suggest saturations reaching 30%–35% in the thin sand layers and up to 75% when patchy mixing is considered. We have carried out a joint estimation of saturation with distribution type and, even if the inversion is not well-constrained due to limited input data, we conclude that the [Formula: see text] has an intermediate pattern between uniform and patchy mixing, which leads to saturation levels of approximately [Formula: see text]. It is worth noting that the 2D section used in this work is located 533 m east of the injection point. We also conclude that the joint estimation of [Formula: see text] properties with saturation is not crucial and consequently that knowing the pressure and temperature state of the reservoir does not prevent reliable estimation of [Formula: see text] saturation.


Geophysics ◽  
2014 ◽  
Vol 79 (2) ◽  
pp. D41-D53 ◽  
Author(s):  
Adam M. Allan ◽  
Tiziana Vanorio ◽  
Jeremy E. P. Dahl

The sources of elastic anisotropy in organic-rich shale and their relative contribution therein remain poorly understood in the rock-physics literature. Given the importance of organic-rich shale as source rocks and unconventional reservoirs, it is imperative that a thorough understanding of shale rock physics is developed. We made a first attempt at establishing cause-and-effect relationships between geochemical parameters and microstructure/rock physics as organic-rich shales thermally mature. To minimize auxiliary effects, e.g., mineralogical variations among samples, we studied the induced evolution of three pairs of vertical and horizontal shale plugs through dry pyrolysis experiments in lieu of traditional samples from a range of in situ thermal maturities. The sensitivity of P-wave velocity to pressure showed a significant increase post-pyrolysis indicating the development of considerable soft porosity, e.g., microcracks. Time-lapse, high-resolution backscattered electron-scanning electron microscope images complemented this analysis through the identification of extensive microcracking within and proximally to kerogen bodies. As a result of the extensive microcracking, the P-wave velocity anisotropy, as defined by the Thomsen parameter epsilon, increased by up to 0.60 at low confining pressures. Additionally, the degree of microcracking was shown to increase as a function of the hydrocarbon generative potential of each shale. At 50 MPa confining pressure, P-wave anisotropy values increased by 0.29–0.35 over those measured at the baseline — i.e., the immature window. The increase in anisotropy at high confining pressure may indicate a source of anisotropy in addition to microcracking — potentially clay mineralogical transformation or the development of intrinsic anisotropy in the organic matter through aromatization. Furthermore, the evolution of acoustic properties and microstructure upon further pyrolysis to the dry-gas window was shown to be negligible.


2020 ◽  
Vol 6 (2) ◽  
pp. 113-120
Author(s):  
Harnanti Yogaputri Hutami ◽  
Fitriyani Fitriyani ◽  
Tiara Larasati Priniarti ◽  
Handoyo Handoyo

The rock physics model is one effective yet challenging way to investigate the coal-seam gas potential in Indonesia. However, because of the complex conditions of the Coal-Seam Gas Reservoirs, it is difficult to establish models. Despite the scarce modeling, this study aims to estimate the relation of gas-saturated within pores of coal seam to the elastic properties of rock, which is P-wave velocity. First, the coal seam minerals are applied to quantify matrix moduli using the Voigt-Reuss-Hill Average method. Pride’s simple equation is used to estimate the elastic properties of the coal seam at dry condition (zero gas saturation). Finally, Biot-Gassmann’s theory is applied to determine the elastic properties of coal seam with fully gas saturated. As the result, the proposed model showed that there is a significant negative correlation between gas content with both density and P-wave velocity of the coal seam. Finally, this P-wave velocity model of gas-saturated coal seams should be properly useful as the quick look for identifying coal seam gas potentials. 


2008 ◽  
Vol 22 (09n11) ◽  
pp. 1437-1442
Author(s):  
CHENGYUAN ZHANG ◽  
XIAOYAN LIU ◽  
DAOYING XI ◽  
QUANSHENG LIU

It is very important to know how the reservoir rock and its fluid properties are linked to seismic dynamic response. Literatures show that there are a variety of rock-physics models such as the most famous Biot-Gassmann equation aimed at the relationship between seismic velocity and liquid saturation. Most of these models make a fundamental assumption of one fluid phase or homogeneous phase within the pore volume. In this paper, we discuss possible seismic velocities change in a two immiscible pore fluids (i.e. water-gas) saturated reservoir with patchy saturation distribution. It is found that P-wave velocity of a reservoir rock with the same saturation but different pore fluid distribution exhibits noticeable variation and deviate overall from Gassmann's results. We use DEM theory to explain this phenomenon. It belongs to hybrid approach in rock-physics modeling and can handle complex pore-fluid-distribution cases. Based on the modeling study, we found that various fluid-distribution models may significantly affect the modulus and P-wave velocity. The seismic reflection time, amplitude and phase characteristics may change with the choice of pore-fluid-distribution models. Relevant rock mechanical experiments indicate the same trend of seismic responses. It also be proven by seismic reservoir monitoring experiment (time lapse study) that incorrect conclusion may be drawn about the strong seismic reflection in pure Utsira Sand if the microscopic pore-fluid-distribution effects are not taken into account.


2021 ◽  
Vol 40 (3) ◽  
pp. 178-185
Author(s):  
Yangjun (Kevin) Liu ◽  
Jonathan Hernandez Casado ◽  
Mohamed El-Toukhy ◽  
Shenghong Tai

Rock properties in the subsurface are of major importance for evaluating the petroleum prospectivity of a sedimentary basin. The key rock properties to understand are porosity, density, temperature, effective stress, and pore pressure. These rock properties can be obtained or calculated when borehole data are available. However, borehole data are usually sparse, especially in frontier basins. We propose some simple rock-physics transforms for converting P-wave velocity to other rock properties. We found that these rock-physics transforms are predictive in the east and west sides of Campeche Basin. The proposed rock-physics transforms can be used to obtain laterally varying rock properties based on information derived from seismic data.


Sign in / Sign up

Export Citation Format

Share Document