Enhancing the Resolving Ability of ERT for Imaging Saltwater Intrusion through Improvements in Inversion Methods: A Laboratory and Numerical Study
Mapping and monitoring of saltwater intrusion are critical to the sustainable management of groundwater in coastal aquifers around the world. Increasingly, geophysical methods, such as electrical resistivity tomography (ERT), have been used to address these needs. We identified methods for the inversion of ERT data that would most accurately map the location and geometry of an intrusion wedge. This was accomplished using both laboratory and synthetic experiments, with the classic representation of an intrusion wedge perpendicular to the coast. The laboratory experiments allowed us to collect ERT data on a saltwater intrusion wedge in an environment where we had supporting data that provided (1) the distribution of salinity within the tank with which to verify our inversion results, (2) the resistivity, porosity and permeability of the porous medium, and (3) the transform between resistivity and salinity. The synthetic experiments allowed to explore issues of specific interest related to the presence of lithologic heterogeneity at a field site: the role of lithologic heterogeneity in introducing complexity both the resistivity-salinity relationship and the geometry of the saltwater intrusion wedge. We found that using a reference model with a good approximation of the wedge to inform the inversion greatly improved the ability of the resulting resistivity profile to map the wedge. Where there was no, or limited lithologic heterogeneity, a parametric approach, which constrained the range of possible solutions by solving for a sharp interface between the saltwater and freshwater regions, was very effective at capturing the wedge location and geometry. Where there was lithologic heterogeneity, a hybrid between the parametric and informed inversion approaches was most effective, resolving the wedge with a high level of accuracy with little a priori information.