The role of preexisting fractures and faults during multistage hydraulic fracturing in the Bakken Formation

2014 ◽  
Vol 2 (3) ◽  
pp. SG25-SG39 ◽  
Author(s):  
Yi Yang ◽  
Mark D. Zoback

We performed an integrated study of multistage hydraulic fracture stimulation of two parallel horizontal wells in the Bakken Formation in the Williston Basin, North Dakota. There are three distinct parts of this study: development of a geomechanical model for the study area, interpretation of multiarray downhole recordings of microseismic events, and interpretation of hydraulic fracturing data in a geomechanical context. We estimated the current stress state to be characterized by an NF/SS regime, with [Formula: see text] oriented approximately [Formula: see text]. The microseismic events were recorded in six vertical observation wells during hydraulic fracturing of parallel wells X and Z with three unusual aspects. First, rather than occurring in proximity to the stages being pressurized, many of the events occurred along the length of well Y, a parallel well located between wells X and Z that had been in production for approximately [Formula: see text] years at the time X and Z were stimulated. Second, relatively few fracturing stages were associated with an elongated cloud of events trending in the direction of [Formula: see text] as was commonly observed during hydraulic fracturing. Instead, the microseismic events in a few stages appeared to trend approximately [Formula: see text], approximately 30° from the direction of [Formula: see text]. Earthquake focal plane mechanisms confirmed slip on faults with this orientation. Finally, the microseismic events were clustered at two distinct depths: one near the depth of the well being pressurized in the Middle Bakken Formation and the other approximately [Formula: see text] above in the Mission Canyon Formation. We proposed that steeply dipping N75°E striking faults with a combination of normal and strike-slip movement were being stimulated during hydraulic fracturing and provided conduits for pore pressure to be transmitted to the overlaying formations. We tested a simple geomechanical analysis to illustrate how this occurred in the context of the stress field, pore pressure, and depletion in the vicinity of well Y.

Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. KS105-KS118 ◽  
Author(s):  
Himanshu Barthwal ◽  
Mirko van der Baan

Hydraulic fracturing in low-permeability hydrocarbon reservoirs creates/reactivates a fracture network leading to microseismic events. We have developed a simplified model of the evolution of the microseismic cloud based on the opening of a planar fracture cavity and its effect on elastic stresses and pore pressure diffusion during fluid injection in hydraulic fracturing treatments. Using a material balance equation, we compute the crack tip propagation over time assuming that the hydraulic fracture is shaped as a single penny-shaped cavity. Results indicate that in low-permeability formations, the crack tip propagates much faster than the pore pressure diffusion front thereby triggering the microseismic events farthest from the injection domain at any given time during fluid injection. We use the crack tip propagation to explain the triggering front observed in distance versus time plots of published microseismic data examples from hydraulic fracturing treatments of low-permeability hydrocarbon reservoirs. We conclude that attributing the location of the microseismic triggering front purely to pore pressure diffusion from the injection point may lead to incorrect estimates of the hydraulic diffusivity by multiple orders of magnitude for low-permeability formations. Moreover, the opening of the fracture cavity creates stress shadow zones perpendicular to the principal fracture walls in which microseismic triggering due to the elastic stress perturbations is suppressed. Microseismic triggering in this stress shadow region may be attributed mainly to pore pressure diffusion. We use the width, instead of the longest size, of the microseismic cloud to obtain an enhanced diffusivity measure, which may be useful for subsequent production simulations.


SPE Journal ◽  
2017 ◽  
Vol 22 (05) ◽  
pp. 1624-1634 ◽  
Author(s):  
T.. Dohmen ◽  
J.. Zhang ◽  
L.. Barker ◽  
J. P. Blangy

Summary In 2014, Hess Corporation collected microseismic and hydraulic-fracturing data in a Bakken field trial near an existing oil well in the Williston Basin of North Dakota. In addition to monitoring the microseismic activity of the newly drilled offset-well completions, the field test delineated the depletion surrounding the original well by slowly repressurizing it. This repressurization induced shear-slip events, which preferentially delineated the depleted zone of the producer well, a process we call microseismic depletion delineation (MDD). By comparing the magnitudes of the depletion-related events to those that accompanied the new offset completions, we observe that higher magnitude microseismic events occur within the depleted interval. This paper offers an explanation for why higher magnitudes appear in the depleted zone and suggests that measuring magnitude statistics in the form of b-values can provide a qualitative assessment of the relative contribution of oil from completions along a wellbore.


2011 ◽  
Vol 19 (5) ◽  
pp. 995-1008 ◽  
Author(s):  
Tianhong Yang ◽  
Wancheng Zhu ◽  
Qinglei Yu ◽  
Honglei Liu

Author(s):  
Cinnamon P. Carlarne ◽  
Jeffrey M. Bielicki

Analysing and developing environmental law requires a broad analysis of the interplay of many factors. This chapter explores some of the many ways in which environmental law influences the connections between nature and people. The chapter does not explore these connections in minute detail, but instead: (i) examines what is meant by ‘environmental law’; (ii) pushes for a broader understanding of the interactions between law, nature, and human well-being; and (iii) provides two examples of the complex relationship between environmental law and human well-being. It provides an overview of environmental law and its origins. It also presents the motivations for environmental law. Finally, hydraulic fracturing and US national parks are used as examples of environmental law and human well-being contexts. These examples highlight some of complicated ways in which environmental law affects human well-being, and demonstrates the need for an expansive view of what well-being entails.


Geophysics ◽  
2017 ◽  
Vol 82 (1) ◽  
pp. KS1-KS11 ◽  
Author(s):  
Wenhuan Kuang ◽  
Mark Zoback ◽  
Jie Zhang

We extend a full-waveform modeling method to invert source focal-plane mechanisms for microseismic data recorded with dual-borehole seismic arrays. Combining inverted focal-plane mechanisms with geomechanics knowledge, we map the pore pressure distribution in the reservoir. Determining focal mechanisms for microseismic events is challenging due to poor geometry coverage. We use the P-wave polarities, the P- and S-wave similarities, the SV/P amplitude ratio, and the SH/P amplitude ratio to invert the focal-plane mechanisms. A synthetic study proves that this method can effectively resolve focal mechanisms with dual-array geometry. We apply this method to 47 relatively large events recorded during a hydraulic fracturing operation in the Barnett Shale. The focal mechanisms are used to invert for the orientation and relative magnitudes of the principal stress axes, the orientation of the planes slipping in shear, and the approximate pore pressure perturbation that caused the slip. The analysis of the focal mechanisms consistently shows a normal faulting stress state with the maximum principal stress near vertical, the maximum horizontal stress near horizontal at an azimuth of N60°E, and the minimum horizontal stress near horizontal at an azimuth of S30°E. We propose a general method that can be used to obtain microseismic focal-plane mechanisms and use them to improve the geomechanical understanding of the stimulation process during multistage hydraulic fracturing.


SPE Journal ◽  
2015 ◽  
Vol 20 (04) ◽  
pp. 784-789 ◽  
Author(s):  
Avi Lin ◽  
Jianfu Ma

Summary This paper presents a mathematical integration process through which all the important useful information and data related to stimulated rock are properly extracted and embedded so that the total effects of the hydraulic-fracturing stimulation are properly presented by the microseismic data detected and collected during the hydraulic-fracturing process. A multistage hydraulic-fracturing strategy is often used to help maximize the stimulated reservoir volume (SRV). The current analysis is based on chaining the stage results one-by-one. At each stage, the 3D SRV is constructed on the basis of its observed microseismic events with an enhanced convex-hull approach. This algorithm offers both a mathematical approximation of 3D volume and a 3D visualization of the SRV geophysical shape(s). More-detailed geometric characteristics are calculated further from the ellipsoid that best fits the constructed SRV, which relies on the acquired microseismic events. The characteristics include length, width, height, and orientation azimuth of the stimulated rock. Moreover, it forms the basis for calculating the overall SRV with the stage-by-stage approach. In the advanced phase, this algorithm offers characteristics related to the interaction between multiple stages. The accurate 3D geophysical geometry of the overlapping volume between multiple stages is extracted and is calculated, and the percentage of overlapping volume over the SRV is estimated at each stage. These volume-overlapping quantities reveal the potential communication between these stages, indicating the efficiency of hydraulic-fracturing efforts and implying the loss of treatment fluid. This algorithm provides the field engineers with several useful aspects: an essential, reliable, and direct compound tool to dynamically visualize the stimulated reservoir geometry and treatment-field evolution; a real-time evaluation of the efficiency of a hydraulic-fracturing treatment; and parameters to help increase the production of a stimulated reservoir.


2017 ◽  
Vol 76 (4) ◽  
pp. 145-153 ◽  
Author(s):  
Jana Nikitin ◽  
Alexandra M. Freund

Abstract. Establishing new social relationships is important for mastering developmental transitions in young adulthood. In a 2-year longitudinal study with four measurement occasions (T1: n = 245, T2: n = 96, T3: n = 103, T4: n = 85), we investigated the role of social motives in college students’ mastery of the transition of moving out of the parental home, using loneliness as an indicator of poor adjustment to the transition. Students with strong social approach motivation reported stable and low levels of loneliness. In contrast, students with strong social avoidance motivation reported high levels of loneliness. However, this effect dissipated relatively quickly as most of the young adults adapted to the transition over a period of several weeks. The present study also provides evidence for an interaction between social approach and social avoidance motives: Social approach motives buffered the negative effect on social well-being of social avoidance motives. These results illustrate the importance of social approach and social avoidance motives and their interplay during developmental transitions.


Crisis ◽  
2016 ◽  
Vol 37 (2) ◽  
pp. 130-139 ◽  
Author(s):  
Danica W. Y. Liu ◽  
A. Kate Fairweather-Schmidt ◽  
Richard Burns ◽  
Rachel M. Roberts ◽  
Kaarin J. Anstey

Abstract. Background: Little is known about the role of resilience in the likelihood of suicidal ideation (SI) over time. Aims: We examined the association between resilience and SI in a young-adult cohort over 4 years. Our objectives were to determine whether resilience was associated with SI at follow-up or, conversely, whether SI was associated with lowered resilience at follow-up. Method: Participants were selected from the Personality and Total Health (PATH) Through Life Project from Canberra and Queanbeyan, Australia, aged 28–32 years at the first time point and 32–36 at the second. Multinomial, linear, and binary regression analyses explored the association between resilience and SI over two time points. Models were adjusted for suicidality risk factors. Results: While unadjusted analyses identified associations between resilience and SI, these effects were fully explained by the inclusion of other suicidality risk factors. Conclusion: Despite strong cross-sectional associations, resilience and SI appear to be unrelated in a longitudinal context, once risk/resilience factors are controlled for. As independent indicators of psychological well-being, suicidality and resilience are essential if current status is to be captured. However, the addition of other factors (e.g., support, mastery) makes this association tenuous. Consequently, resilience per se may not be protective of SI.


2020 ◽  
Vol 25 (3) ◽  
pp. 162-173 ◽  
Author(s):  
Sascha Zuber ◽  
Matthias Kliegel

Abstract. Prospective Memory (PM; i.e., the ability to remember to perform planned tasks) represents a key proxy of healthy aging, as it relates to older adults’ everyday functioning, autonomy, and personal well-being. The current review illustrates how PM performance develops across the lifespan and how multiple cognitive and non-cognitive factors influence this trajectory. Further, a new, integrative framework is presented, detailing how those processes interplay in retrieving and executing delayed intentions. Specifically, while most previous models have focused on memory processes, the present model focuses on the role of executive functioning in PM and its development across the lifespan. Finally, a practical outlook is presented, suggesting how the current knowledge can be applied in geriatrics and geropsychology to promote healthy aging by maintaining prospective abilities in the elderly.


Sign in / Sign up

Export Citation Format

Share Document