Inversion-based detection of bed boundaries for petrophysical evaluation with well logs: Applications to carbonate and organic-shale formations

2014 ◽  
Vol 2 (3) ◽  
pp. T129-T142 ◽  
Author(s):  
Zoya Heidari ◽  
Carlos Torres-Verdín

Petrophysical interpretation of well logs acquired in organic shales and carbonates is challenging because of the presence of thin beds and spatially complex lithology; conventional interpretation techniques often fail in such cases. Recently introduced methods for thin-bed interpretation enable corrections for shoulder-bed effects on well logs but remain sensitive to incorrectly picked bed boundaries. We introduce a new inversion-based method to detect bed boundaries and to estimate petrophysical and compositional properties of multilayer formations from conventional well logs in the presence of thin beds, complex lithology/fluids, and kerogen. Bed boundaries and bed properties are updated in two serial inversion loops. Numerical simulation of well logs within both inversion loops explicitly takes into account differences in the volume of investigation of all well logs involved in the estimation, thereby enabling corrections for shoulder-bed effects. The successful application of the new interpretation method is documented with synthetic cases and field data acquired in thinly bedded carbonates and in the Haynesville shale-gas formation. Estimates of petrophysical/compositional properties obtained with the new interpretation method were compared to those obtained with (1) nonlinear inversion of well logs with inaccurate bed boundaries, (2) depth-by-depth inversion of well logs, and (3) core/x-ray diffraction measurements. Results indicated that the new method improves the estimation of porosity of thin beds by more than 200% in the carbonate field example and by more than 40% in the shale-gas example, compared to depth-by-depth interpretation results obtained with commercial software. This improvement in the assessment of petrophysical/compositional properties reduces uncertainty in hydrocarbon reserves and aids in the selection of hydraulic fracture locations in organic shale.

2013 ◽  
Vol 1 (1) ◽  
pp. T113-T123 ◽  
Author(s):  
Zoya Heidari ◽  
Carlos Torres-Verdín

Reliable estimates of petrophysical and compositional properties of organic shale are critical for detecting perforation zones or candidates for hydro-fracturing jobs. Current methods for in situ formation evaluation of organic shale largely rely on qualitative responses and empirical formulas. Even core measurements can be inconsistent and inaccurate when evaluating clay minerals and other grain constituents. We implement a recently introduced inversion-based method for organic-shale evaluation from conventional well logs. The objective is to estimate total porosity, total organic carbon (TOC), and volumetric/weight concentrations of mineral/fluid constituents. After detecting bed boundaries, the first step of the method is to perform separate inversion of individual well logs to estimate bed physical properties such as density, neutron migration length, electrical conductivity, photoelectric factor (PEF), and thorium, uranium , and potassium volumetric/weight concentrations. Next, a multilayer petrophysical model specific to organic shale is constructed with an initial guess obtained from conventional well-log interpretation or X-ray diffraction data; bed physical properties are calculated with the initial layer-by-layer values. Final estimates of organic shale petrophysical and compositional properties are obtained by progressively minimizing the difference between calculated and measured bed properties. A unique advantage of this method is the correction of shoulder-bed effects on well logs, which are prevalent in shale-gas plays. Another advantage is the explicit calculation of accurate well-log responses for specific petrophysical, mineral, fluid, and kerogen properties based on chemical formulas and volumetric concentrations of minerals/kerogen and fluid constituents. Examples are described of the successful application of the new organic-shale evaluation method in the Haynesville shale-gas formation. This formation includes complex solid compositions and thin beds where rapid depth variations of mineral/fluid constituents are commonplace. Comparison of estimates for total porosity, total water saturation, and TOC obtained with (a) commercial software for multimineral analysis, (b) our organic-shale evaluation method, and (c) core/X-ray diffraction measurements indicates a significant improvement in estimates of total porosity and water saturation yielded by our interpretation method. The estimated TOC is also in agreement with core laboratory measurements.


First Break ◽  
2015 ◽  
Vol 33 (2) ◽  
Author(s):  
Mart Zijp ◽  
Johan ten Veen ◽  
Roel Verreussel ◽  
Jan ter Heege ◽  
Dario Ventra ◽  
...  
Keyword(s):  

2020 ◽  
Author(s):  
Nikita Seleznev ◽  
◽  
Tarek M. Habashy ◽  
Michel Claverie ◽  
Hanming Wang ◽  
...  

Author(s):  
Xingyuan Liang ◽  
Tianbo Liang ◽  
Fujian Zhou ◽  
Caizhong Wang ◽  
Kai Yang ◽  
...  

Author(s):  
N. P. Szabó ◽  
B. A. Braun ◽  
M. M. G. Abdelrahman ◽  
M. Dobróka

AbstractThe identification of lithology, fluid types, and total organic carbon content are of great priority in the exploration of unconventional hydrocarbons. As a new alternative, a further developed K-means type clustering method is suggested for the evaluation of shale gas formations. The traditional approach of cluster analysis is mainly based on the use of the Euclidean distance for grouping the objects of multivariate observations into different clusters. The high sensitivity of the L2 norm applied to non-Gaussian distributed measurement noises is well-known, which can be reduced by selecting a more suitable norm as distance metrics. To suppress the harmful effect of non-systematic errors and outlying data, the Most Frequent Value method as a robust statistical estimator is combined with the K-means clustering algorithm. The Cauchy-Steiner weights calculated by the Most Frequent Value procedure is applied to measure the weighted distance between the objects, which improves the performance of cluster analysis compared to the Euclidean norm. At the same time, the centroids are also calculated as a weighted average (using the Most Frequent Value method), instead of applying arithmetic mean. The suggested statistical method is tested using synthetic datasets as well as observed wireline logs, mud-logging data and core samples collected from the Barnett Shale Formation, USA. The synthetic experiment using extremely noisy well logs demonstrates that the newly developed robust clustering procedure is able to separate the geological-lithological units in hydrocarbon formations and provide additional information to standard well log analysis. It is also shown that the Cauchy-Steiner weighted cluster analysis is affected less by outliers, which allows a more efficient processing of poor-quality wireline logs and an improved evaluation of shale gas reservoirs.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5427
Author(s):  
Boning Zhang ◽  
Baochao Shan ◽  
Yulong Zhao ◽  
Liehui Zhang

An accurate understanding of formation and gas properties is crucial to the efficient development of shale gas resources. As one kind of unconventional energy, shale gas shows significant differences from conventional energy ones in terms of gas accumulation processes, pore structure characteristics, gas storage forms, physical parameters, and reservoir production modes. Traditional experimental techniques could not satisfy the need to capture the microscopic characteristics of pores and throats in shale plays. In this review, the uniqueness of shale gas reservoirs is elaborated from the perspective of: (1) geological and pore structural characteristics, (2) adsorption/desorption laws, and (3) differences in properties between the adsorbed gas and free gas. As to the first aspect, the mineral composition and organic geochemical characteristics of shale samples from the Longmaxi Formation, Sichuan Basin, China were measured and analyzed based on the experimental results. Principles of different methods to test pore size distribution in shale formations are introduced, after which the results of pore size distribution of samples from the Longmaxi shale are given. Based on the geological understanding of shale formations, three different types of shale gas and respective modeling methods are reviewed. Afterwards, the conventional adsorption models, Gibbs excess adsorption behaviors, and supercritical adsorption characteristics, as well as their applicability to engineering problems, are introduced. Finally, six methods of calculating virtual saturated vapor pressure, seven methods of giving adsorbed gas density, and 12 methods of calculating gas viscosity in different pressure and temperature conditions are collected and compared, with the recommended methods given after a comparison.


2013 ◽  
Vol 26 (12) ◽  
pp. 1632-1641 ◽  
Author(s):  
Sang Y Ha ◽  
Jeeyun Lee ◽  
So Y Kang ◽  
In-Gu Do ◽  
Soomin Ahn ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document