scholarly journals Role of Salt Migration in Destabilization of Intra Permafrost Hydrates in the Arctic Shelf: Experimental Modeling

Geosciences ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 188 ◽  
Author(s):  
Evgeny Chuvilin ◽  
Valentina Ekimova ◽  
Boris Bukhanov ◽  
Sergey Grebenkin ◽  
Natalia Shakhova ◽  
...  

Destabilization of intrapermafrost gas hydrate is one possible reason for methane emission on the Arctic shelf. The formation of these intrapermafrost gas hydrates could occur almost simultaneously with the permafrost sediments due to the occurrence of a hydrate stability zone after sea regression and the subsequent deep cooling and freezing of sediments. The top of the gas hydrate stability zone could exist not only at depths of 200–250 m, but also higher due to local pressure increase in gas-saturated horizons during freezing. Formed at a shallow depth, intrapermafrost gas hydrates could later be preserved and transform into a metastable (relict) state. Under the conditions of submarine permafrost degradation, exactly relict hydrates located above the modern gas hydrate stability zone will, first of all, be involved in the decomposition process caused by negative temperature rising, permafrost thawing, and sediment salinity increasing. That’s why special experiments were conducted on the interaction of frozen sandy sediments containing relict methane hydrates with salt solutions of different concentrations at negative temperatures to assess the conditions of intrapermafrost gas hydrates dissociation. Experiments showed that the migration of salts into frozen hydrate-containing sediments activates the decomposition of pore gas hydrates and increase the methane emission. These results allowed for an understanding of the mechanism of massive methane release from bottom sediments of the East Siberian Arctic shelf.

Geosciences ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 407 ◽  
Author(s):  
Chuvilin ◽  
Davletshina ◽  
Ekimova ◽  
Bukhanov ◽  
Shakhova ◽  
...  

Destabilization of intrapermafrost gas hydrates is one of the possible mechanisms responsible for methane emission in the Arctic shelf. Intrapermafrost gas hydrates may be coeval to permafrost: they originated during regression and subsequent cooling and freezing of sediments, which created favorable conditions for hydrate stability. Local pressure increase in freezing gas-saturated sediments maintained gas hydrate stability from depths of 200–250 meters or shallower. The gas hydrates that formed within shallow permafrost have survived till present in the metastable (relict) state. The metastable gas hydrates located above the present stability zone may dissociate in the case of permafrost degradation as it becomes warmer and more saline. The effect of temperature increase on frozen sand and silt containing metastable pore methane hydrate is studied experimentally to reconstruct the conditions for intrapermafrost gas hydrate dissociation. The experiments show that the dissociation process in hydrate-bearing frozen sediments exposed to warming begins and ends before the onset of pore ice melting. The critical temperature sufficient for gas hydrate dissociation varies from −3.0 to −0.3 °C and depends on lithology (particle size) and salinity of the host frozen sediments. Taking into account an almost gradientless temperature distribution during degradation of subsea permafrost, even minor temperature increases can be expected to trigger large-scale dissociation of intrapermafrost hydrates. The ensuing active methane emission from the Arctic shelf sediments poses risks of geohazard and negative environmental impacts.


2021 ◽  
Author(s):  
Hariharan Ramachandran ◽  
Andreia Plaza-Faverola ◽  
Hugh Daigle ◽  
Stefan Buenz

<p>Evidences of subsurface fluid flow-driven fractures (from seismic interpretation) are quite common at Vestnesa Ridge (around 79ºN in the Arctic Ocean), W-Svalbard margin. Ultimately, the fractured systems have led to the formation of pockmarks on the seafloor. At present day, the eastern segment of the ridge has active pockmarks with continuous methane seep observations in sonar data. The pockmarks in the western segment are considered inactive or to seep at a rate that is harder to identify. The ridge is at ~1200m water depth with the base of the gas hydrate stability zone (GHSZ) at ~200m below the seafloor. Considerable free gas zone is present below the hydrates. Besides the obvious concern of amount and rates of historic methane seeping into the ocean biosphere and its associated effects, significant gaps exist in the ability to model the processes of flow of methane through this faulted and fractured region. Our aim is to highlight the interactions between physical flow, geomechanics and geological control processes that govern the rates and timing of methane seepage.</p><p>For this purpose, we performed numerical fluid flow simulations. We integrate fundamental mass and component conservation equations with a phase equilibrium approach accounting for hydrate phase boundary effects to simulate the transport of gas from the base of the GHSZ through rock matrix and interconnected fractures until the seafloor. The relation between effective stress and fluid pressure is considered and fractures are activated once the effective stress exceeds the tensile limit. We use field data (seismic, oedometer tests on calypso cores, pore fluid pressure and temperature) to constrain the range of validity of various flow and geomechanical parameters in the simulation (such as vertical stress, porosity, permeability, saturations).</p><p>Preliminary results indicate fluid overpressure greater than 1.5 MPa is required to initiate fractures at the base of the gas hydrate stability zone for the investigated system. Focused fluid flow occurs through the narrow fracture networks and the gas reaches the seafloor within 1 day. The surrounding regions near the fracture network exhibit slower seepage towards the seafloor, but over a wider area. Advective flux through the less fractured surrounding regions, reaches the seafloor within 15 years and a diffusive flux reaches within 1200 years. These times are controlled by the permeability of the sediments and are retarded further due to considerable hydrate/carbonate formation during vertical migration. Next course of action includes constraining the methane availability at the base of the GHSZ and estimating its impact on seepage behavior.</p>


2019 ◽  
Vol 7 (3) ◽  
pp. SG11-SG22 ◽  
Author(s):  
Heather Bedle

Gas hydrates in the oceanic subsurface are often difficult to image with reflection seismic data, particularly when the strata run parallel to the seafloor and in regions that lack the presence of a bottom-simulating reflector (BSR). To address and understand these imaging complications, rock-physics modeling and seismic attribute analysis are performed on modern 2D lines in the Pegasus Basin in New Zealand, where the BSR is not continuously imaged. Based on rock-physics and seismic analyses, several seismic attribute methods identify weak BSR reflections, with the far-angle stack data being particularly effective. Rock modeling results demonstrate that far-offset seismic data are critical in improving the imaging and interpretation of the base of the gas hydrate stability zone. The rock-physics modeling results are applied to the Pegasus 2009 2D data set that reveals a very weak seismic reflection at the base of the hydrates in the far-angle stack. This often-discontinuous reflection is significantly weaker in amplitude than typical BSRs associated with hydrates. These weak far-angle stack BSRs often do not appear clearly in full stack data, the most commonly interpreted seismic data type. Additional amplitude variation with angle (AVA) attribute analyses provide insight into identifying the presence of gas hydrates in regions lacking a strong BSR. Although dozens of seismic attributes were investigated for their ability to reveal weak reflections at the base of the gas hydrate stability zone, those that enhance class 2 AVA anomalies were most effective, particularly the seismic fluid factor attribute.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Wolfram H. Geissler ◽  
A. Catalina Gebhardt ◽  
Felix Gross ◽  
Jutta Wollenburg ◽  
Laura Jensen ◽  
...  

Abstract Slope failure like in the Hinlopen/Yermak Megaslide is one of the major geohazards in a changing Arctic environment. We analysed hydroacoustic and 2D high-resolution seismic data from the apparently intact continental slope immediately north of the Hinlopen/Yermak Megaslide for signs of past and future instabilities. Our new bathymetry and seismic data show clear evidence for incipient slope instability. Minor slide deposits and an internally-deformed sedimentary layer near the base of the gas hydrate stability zone imply an incomplete failure event, most probably about 30000 years ago, contemporaneous to or shortly after the Hinlopen/Yermak Megaslide. An active gas reservoir at the base of the gas hydrate stability zone demonstrate that over-pressured fluids might have played a key role in the initiation of slope failure at the studied slope, but more importantly also for the giant HYM slope failure. To date, it is not clear, if the studied slope is fully preconditioned to fail completely in future or if it might be slowly deforming and creeping at present. We detected widespread methane seepage on the adjacent shallow shelf areas not sealed by gas hydrates.


2021 ◽  
pp. 1-45
Author(s):  
JInqiang Liang ◽  
Zijian Zhang ◽  
Jingan Lu ◽  
Guo Yiqun ◽  
Zhibin Sha ◽  
...  

Bottom-simulating reflections (BSR) in seismic data have been widely accepted to indicate the base of methane gas hydrate stability zone (MGHSZ) and free gas was thought to exist only below it. However, real geologic systems are far more complex. Here, we presented the results of three-dimensional seismic, logging while drilling (LWD), in situ and coring measurements at a venting gas hydrate system in the Shenhu area of the South China Sea. Our studies reveal that free gas has migrated upward through the thermogenic gas hydrate stability zone (TGHSZ) into the MGHSZ and become a part of the gas hydrate system. Seismic amplitude anomalies and core results suggest the presence of free gas above the base of MHSZ at 165 mbsf and the presence of thermogenic gas hydrates below it in the well SC-W01. Analyses of P-wave velocity, S-wave velocity, density, and porosity logs reveal free gas occurs above and below the MGHSZ as well. Integrating log and core analysis with seismic interpretation suggests that the variation in seismic amplitude within chaotic zone is associated with variable gas saturations, and a large amount of methane and thermogenic gases accumulate near the complex BSRs. We propose that relative permeability likely plays a significant role in the free gas distribution and formation of gas hydrates within a venting gas hydrate system, while the effect of dissolved-gas short migration is not ignored. Our results have important implications for understanding the accumulation and distribution of gas hydrates and free gas in the venting gas hydrate system and seeps at the seafloor.


2020 ◽  
Vol 4 (1) ◽  
pp. 91-97
Author(s):  
Valentina V. Malakhova

Suitable conditions for the formation of methane hydrates exist in the bottom sediments of shallow Arctic shelves in the presence of permafrost. Salt diffusion into hydrated bottom sediments can help accelerate hydrate degradation. An analysis of the influence of salinity of the bottom sediments of the Arctic shelf on the thickness of the methane hydrate stability zone was based on mathematical modeling. Estimates of the thickness of the stability zone were obtained in experiments with various correlations which relate the hydrate dissociation temperature in the presence of aqueous solutions containing salts.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Michela Giustiniani ◽  
Umberta Tinivella ◽  
Martin Jakobsson ◽  
Michele Rebesco

Recent estimations suggest that vast amounts of methane are locked in the Arctic Ocean bottom sediments in various forms of gas hydrates. A potential feedback from a continued warming of the Arctic region is therefore the release of methane to the atmosphere. This study addresses the relationship between a warming of the Arctic ocean and gas hydrate stability. We apply a theoretical model that estimates the base of the gas hydrate stability zone in the Arctic Ocean considering different bottom water warming and sea level scenarios. We model the present day conditions adopting two different geothermal gradient values: 30 and 40°C/km. For each geothermal gradient value, we simulate a rise and a decrease in seafloor temperature equal to 2°C and in sea level equal to 10 m. The results show that shallow gas hydrates present in water depths less than 500 m would be strongly affected by a future rise in seafloor temperature potentially resulting in large amounts of gas released to the water column due to their dissociation. We estimate that the area, where there could be complete gas hydrate dissociation, is about 4% of the area where there are the conditions for gas hydrates stability.


Geophysics ◽  
2005 ◽  
Vol 70 (5) ◽  
pp. B19-B34 ◽  
Author(s):  
Stefan Bünz ◽  
Jürgen Mienert ◽  
Maarten Vanneste ◽  
Karin Andreassen

Geophysical evidence for gas hydrates is widespread along the northern flank of the Storegga Slide on the mid-Norwegian margin. Bottom-simulating reflectors (BSR) at the base of the gas hydrate stability zone cover an area of approximately 4000 km[Formula: see text], outside but also inside the Storegga Slide scar area. Traveltime inversion and forward modeling of multicomponent wide-angle seismic data result in detailed P- and S-wave velocities of hydrate- and gas-bearing sediment layers. The relationship between the velocities constrains the background velocity model for a hydrate-free, gas-free case. The seismic velocities indicate that hydrate concentrations in the pore space of sediments range between 3% and 6% in a zone that is as much as 50 m thick overlying the BSR. Hydrates are most likely disseminated, neither cementing the sediment matrix nor affecting the stiffness of the matrix noticeably. Average free-gas concentrations beneath the hydrate stability zone are approximately 0.4% to 0.8% of the pore volume, assuming a homogeneous gas distribution. The free-gas zone underneath the BSR is about 80 m thick. Amplitude and reflectivity analyses suggest a rather complex distribution of gas along specific sedimentary strata rather than along the base of the gas hydrate stability zone (BGHS). This gives rise to enhanced reflections that terminate at the BGHS. The stratigraphic control on gas distribution forces the gas concentration to increase slightly with depth at certain locations. Gas-bearing layers can be as thin as 2 m.


Geosciences ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 504
Author(s):  
Tatiana V. Matveeva ◽  
Valery D. Kaminsky ◽  
Anastasiia A. Semenova ◽  
Nikolai A. Shchur

The key factors controlling the formation and dynamics of relicpermafrost and the conditions for the stability of associated gas hydrates have been investigated using numerical modeling in this work. A comparison was made between two scenarios that differed in the length of freezing periods and corresponding temperature shifts to assess the impact on the evolution of the permafrost–hydrate system and to predict its distribution and geometry. The simulation setup included the specific heat of gas hydrate formation and ice melting. Significantly, it was shown that the paleoscenario and heat flows affect the formation of permafrost and the conditions for gas hydrate stability. In the Laptev Sea, the minimum and maximum predicted preservation times for permafrost are 9 and 36.6 kyr, respectively, whereas the presence of conditions consistent with methane hydrate stability at the maximum permafrost thickness is possible for another 25.9 kyr. The main factors influencing the rate of permafrost degradation are the heat flow and porosity of frozen sediments. The rates of permafrost thawing are estimated to be between 1 and 3 cm/yr. It is revealed that the presence of gas hydrates slows the thawing of the permafrost and feeds back to prolong the conditions under which gas hydrates are stable.


Sign in / Sign up

Export Citation Format

Share Document