Near-surface Structure Estimation using Rayleigh Wave and a Genetic Algorithm

Author(s):  
Tongju Gong ◽  
Miao Liu ◽  
Hongjun Zhang ◽  
Xiaodong Li ◽  
Haolin Chen ◽  
...  
2015 ◽  
Author(s):  
Tongju Gong* ◽  
Miao Liu ◽  
Yiming Wang ◽  
Zhiwei Zhu ◽  
Baoqing Zhang

Geophysics ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. R805-R814 ◽  
Author(s):  
Zhen Xing ◽  
Alfredo Mazzotti

When reliable a priori information is not available, it is difficult to correctly predict near-surface S-wave velocity models from Rayleigh waves through existing techniques, especially in the case of complex geology. To tackle this issue, we have developed a new method: two-grid genetic-algorithm Rayleigh-wave full-waveform inversion (FWI). Adopting a two-grid parameterization of the model, the genetic algorithm inverts for unknown velocities and densities at the nodes of a coarse grid, whereas the forward modeling is performed on a fine grid to avoid numerical dispersion. A bilinear interpolation brings the coarse-grid results into the fine-grid models. The coarse inversion grid allows for a significant reduction in the computing time required by the genetic algorithm to converge. With a coarser grid, there are fewer unknowns and less required computing time, at the expense of the model resolution. To further increase efficiency, our inversion code can perform the optimization using an offset-marching strategy and/or a frequency-marching strategy that can make use of different kinds of objective functions and allows for parallel computing. We illustrate the effect of our inversion method using three synthetic examples with rather complex near-surface models. Although no a priori information was used in all three tests, the long-wavelength structures of the reference models were fairly predicted, and satisfactory matches between “observed” and predicted data were achieved. The fair predictions of the reference models suggest that the final models estimated by our genetic-algorithm FWI, which we call macromodels, would be suitable inputs to gradient-based Rayleigh-wave FWI for further refinement. We also explored other issues related to the practical use of the method in different work and explored applications of the method to field data.


2021 ◽  
Author(s):  
Sujeong Lim ◽  
Claudio Cassardo ◽  
Seon Ki Park

<p>The ensemble data assimilation system is beneficial to represent the initial uncertainties and flow-dependent background error covariance (BEC). In particular, the inevitable model uncertainties can be expressed by ensemble spread, that is the standard deviation of ensemble BEC. However, the ensemble spread generally suffers from under-estimated problems. To alleviate this problem, recent studies employed stochastic perturbation schemes to increases the ensemble spreads by adding the random forcing in the model tendencies (i.e., physical or dynamical tendencies) or parameterization schemes (i.e., PBL, convective scheme, etc.). In this study, we focus on the near-surface uncertainties which are affected by the interactions between the land and atmosphere process. The land surface model (LSM) provides various fluxes as the lower boundary condition to the atmosphere, influencing the accuracy of hourly-to-seasonal scale weather forecasting, but the surface uncertainties were not much addressed yet. In this study, we developed the stochastically perturbed parameterization (SPP) scheme for the Noah LSM. The Weather Research and Forecasting (WRF) ensemble system is used for regional weather forecasting over East Asia, especially over the Korean Peninsula. As a testbed experiment with the newly-developed Noah LSM-SPP system, we first perturbed the soil temperature — a crucial variable for the near-surface forecasts by affecting sensible heat fluxes, land surface skin temperature and surface air temperature, and hence lower-tropospheric temperature. Here, the random forcing used in perturbation is made by the tuning parameters for amplitude, length scale, and time scales: they are commonly determined empirically by trial and error. In order to find optimal tuning parameter values, we applied a global optimization algorithm — the micro-genetic algorithm (micro-GA) — to achieve the smallest root-mean-squared errors. Our results indicate that optimization of the random forcing parameters contributes to an increase in the ensemble spread and a decrease in the ensemble mean errors in the near-surface and lower-troposphere uncertainties. Further experiments will be conducted by including soil moisture in the testbed.</p>


2017 ◽  
Vol 16 (4) ◽  
pp. 289-297
Author(s):  
D. Yu. Snezgkov ◽  
S. N. Leonovich

The existing non-destructive testing system of structure concrete is actually orientated on the usage of longitudinal acoustical waves. This is due to simplicity of technical realization for measuring velocity (time) of acoustical pulse propagation in bulk concrete. But a reverse side of simple measuring procedure is a loss of additional information on concrete which is contained in the accepted acoustical signal. Therefore usage of an ultrasonic concrete testing method is limited by assessment of its strength. Joint usage of several wave types, so-called multi-wave testing, allows to refine metrology parameters of the ultrasonic method and to gain more information while determining physical and mechanical properties of concrete in laboratory and in situ conditions. The paper considers testing of elongated concrete elements and structures by an ultrasonic pulsing method on the basis of longitudinal subsurface and Rayleigh waves. It has been proposed to use methodology for time selection of wave components according to amplitude parameter and it has been applied for standard acoustical transformers with considerable reverberation time and not possessing spatial selectivity Basic principle of the proposed methodology is visual (according to oscillogram of the received signal) determination of characteristic time moments which are used for calculation of differential value of a propagation velocity in the Rayleigh wave impulse. The paper presents results pertaining to simulation of acoustical pulse propagation on the basis of 0.15 m and data of concrete ultrasonic in situ testing on measuring bases from 0.25 to 1.75 m. Advantage of large baseline for sonic test is a possibility for execution of a hundred percent inspection for surface of large-sized elements and structures, and so there is no need to make a selective inspection in some control areas as it is stipulated by provided by existing regulations. Responsivity of the Rayleigh wave parameters to near surface concrete defects permits quickly and efficiently to detect crack areas in a reinforced structure. Energy localization of a surface wave in a layer having width λ/2–λ provides a possibility to ignore reinforcement availability under appropriate selection of oscillation frequency. In addition to this, large measuring baseline makes it possible to lower effect of concrete structural inhomogeneity on statistical stability for pulse velocity assessment that ultimately reveals a possibility to register an appearance of concrete acoustical elasticity effect under in situ conditions.


2018 ◽  
Vol 38 (4) ◽  
pp. 851-870 ◽  
Author(s):  
Marianne Vandenbossche ◽  
Gesine Gunkel-Grabole ◽  
Anja Car ◽  
Laetitia Bernard ◽  
Patrick Rupper ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document