Reverse Time Migration surface offset gathers part 1: a new method to produce ‘classical’ common image gathers

Author(s):  
Matteo Giboli ◽  
Reda Baina ◽  
Laurence Nicoletis ◽  
Bertrand Duquet
Geophysics ◽  
2014 ◽  
Vol 79 (3) ◽  
pp. WA3-WA11 ◽  
Author(s):  
Wei Xie ◽  
Dinghui Yang ◽  
Faqi Liu ◽  
Jingshuang Li

With the capability of handling complicated velocity models, reverse-time migration (RTM) has become a powerful imaging method. Improving imaging accuracy and computational efficiency are two significant but challenging tasks in the applications of RTM. Despite being the most popular numerical technique applied in RTM, finite-difference (FD) methods often suffer from undesirable numerical dispersion, leading to a noticeable loss of imaging resolution. A new and effective FD operator, called the high-order stereo operator, has been developed to approximate the partial differential operators in the wave equation, from which a numerical scheme called the three-step stereo method (TSM) has been developed and has shown effectiveness in suppressing numerical dispersion. Numerical results show that compared with the conventional numerical methods such as the Lax-Wendroff correction (LWC) scheme and the staggered-grid (SG) FD method, this new method significantly reduces numerical dispersion and computational cost. Tests on the impulse response and the 2D prestack Hess acoustic VTI model demonstrated that the TSM achieves higher image quality than the LWC and SG methods do, especially when coarse computation grids were used, which indicated that the new method can be a promising algorithm for large-scale anisotropic RTM.


Geophysics ◽  
2021 ◽  
pp. 1-81
Author(s):  
Benxin Chi ◽  
Kai Gao ◽  
Lianjie Huang

Elastic-wave imaging using multi-component data can provide more useful subsurface information than acoustic-wave imaging, but is usually algorithmically challenging. We develop a vector elastic deconvolution migration method for high-resolution imaging of subsurface structures in isotropic and anisotropic elastic media. Our new method employs a vector deconvolution imaging condition based on dual wavefield decomposition, including an explicit directional wavefield separation using the Hilbert transform, and a P/S vector wavefield decomposition using the low-rank decomposition method. Using three elastic models, we numerically demonstrate that our new method produces notably higher-resolution and more amplitude-balanced elastic images compared with a cross-correlation-based vector elastic reverse-time migration method.


Geophysics ◽  
2009 ◽  
Vol 74 (4) ◽  
pp. A29-A33 ◽  
Author(s):  
Yu Zhang ◽  
Guanquan Zhang

We have proposed a new method, a one-step extrapolation algorithm, to solve the acoustic wave equation. By introducing a square-root operator, the two-way wave equation can be formulated as a first-order partial differential equation in time, which is similar to the one-way wave equation. To solve the new wave equation, we used a stable explicit extrapolation method in the time direction and handled lateral velocity variations in the space and wavenumber domains. Unlike the conventional explicit finite-difference schemes, the new method does not suffer from numerical instability or numerical dispersion problems. It can be used to design cost-effective and high-quality reverse time migration or modeling code.


2020 ◽  
Vol 38 (2) ◽  
Author(s):  
Razec Cezar Sampaio Pinto da Silva Torres ◽  
Leandro Di Bartolo

ABSTRACT. Reverse time migration (RTM) is one of the most powerful methods used to generate images of the subsurface. The RTM was proposed in the early 1980s, but only recently it has been routinely used in exploratory projects involving complex geology – Brazilian pre-salt, for example. Because the method uses the two-way wave equation, RTM is able to correctly image any kind of geological environment (simple or complex), including those with anisotropy. On the other hand, RTM is computationally expensive and requires the use of computer clusters. This paper proposes to investigate the influence of anisotropy on seismic imaging through the application of RTM for tilted transversely isotropic (TTI) media in pre-stack synthetic data. This work presents in detail how to implement RTM for TTI media, addressing the main issues and specific details, e.g., the computational resources required. A couple of simple models results are presented, including the application to a BP TTI 2007 benchmark model.Keywords: finite differences, wave numerical modeling, seismic anisotropy. Migração reversa no tempo em meios transversalmente isotrópicos inclinadosRESUMO. A migração reversa no tempo (RTM) é um dos mais poderosos métodos utilizados para gerar imagens da subsuperfície. A RTM foi proposta no início da década de 80, mas apenas recentemente tem sido rotineiramente utilizada em projetos exploratórios envolvendo geologia complexa, em especial no pré-sal brasileiro. Por ser um método que utiliza a equação completa da onda, qualquer configuração do meio geológico pode ser corretamente tratada, em especial na presença de anisotropia. Por outro lado, a RTM é dispendiosa computacionalmente e requer o uso de clusters de computadores por parte da indústria. Este artigo apresenta em detalhes uma implementação da RTM para meios transversalmente isotrópicos inclinados (TTI), abordando as principais dificuldades na sua implementação, além dos recursos computacionais exigidos. O algoritmo desenvolvido é aplicado a casos simples e a um benchmark padrão, conhecido como BP TTI 2007.Palavras-chave: diferenças finitas, modelagem numérica de ondas, anisotropia sísmica.


Sign in / Sign up

Export Citation Format

Share Document