Prestack multiwave joint inversion for Young's modulus and Poisson ratio based on stochastic kriging interpolation

Author(s):  
Bo Yu ◽  
Hui Zhou ◽  
Xiaofeng Zou ◽  
Shaohuan Zu ◽  
Ning Wang ◽  
...  
1976 ◽  
Vol 40 (4) ◽  
pp. 508-513 ◽  
Author(s):  
S. J. Lai-Fook ◽  
T. A. Wilson ◽  
R. E. Hyatt ◽  
J. R. Rodarte

The elastic constants of dog lungs were determined at various degrees of inflation. In one set of experiments, the lobes were subjected to deformations that approximated the conditions of uniaxial loading. These data, together with the bulk modulus data obtained from the local slope of the pressure-volume curve, were used to determine the two elastic moduli that are needed to describe small nonuniform deformations about an initial state of uniform inflation. The bulk modulus was approximately 4 times the inflation pressure, and Young's modulus was approximately 1.5 times the inflation pressure. In a second set of experiments, lobes were subjected to indentation tests using cylindric punches 1–3 cm in diameter. The value for Young's modulus obtained from these data was slightly higher, approximately twice the inflation pressure. These experiments indicate that the lung is much more easily deformable in shear than in dilatation and that the Poisson ratio for the lung is high, approximately 0.43.


1983 ◽  
Vol 69 (7) ◽  
pp. 739-745 ◽  
Author(s):  
Minoru ASADA ◽  
Yasuo OMORI

Author(s):  
Enboa Wu ◽  
Albert J. D. Yang ◽  
Ching-An Shao ◽  
C. S. Yen

Nondestructive determination of Young’s modulus, coefficient of thermal expansion, Poisson ratio, and thickness of a thin film has long been a difficult but important issue as the film of micrometer order thick might behave differently from that in the bulk state. In this paper, we have successfully demonstrated the capability of determining all these four parameters at one time. This novel method includes use of the digital phase-shifting reflection moire´ (DPRM) technique to record the slope of wafer warpage under temperature drop condition. In the experiment, 1-um thick aluminum was sputtered on a 6-in silicon wafer. The convolution relationship between the measured data and the mechanical properties was constructed numerically using the conventional 3D finite element code. The genetic algorithm (GA) was adopted as the searching tool for search of the optimal mechanical properties of the film. It was found that the determined data for Young’s modulus (E), Coefficient of Thermal Expansion (CTE), Poisson ratio (ν), and thickness (h) of the 1.00 um thick aluminum film were 104.2Gpa, 38.0 ppm/°C, 0.38, and 0.98 um, respectively, whereas that in the bulk state were measured to be E=71.4 Gpa, CTE=23.0 ppm/°C, and ν=0.34. The significantly larger values on the Young’s modulus and the coefficient of thermal expansion determined by this method might be attributed to the smaller dislocation density due to the thin dimension and formation of the 5-nm layer of Al2O3 formed on top of the 1-um thick sputtered film. The Young’s Modulus and the Poisson ratio of this nano-scale Al2O3 film were then determined. Their values are consistent with the physical intuition of the microstructure.


2020 ◽  
Vol 39 (4) ◽  
pp. 657-663
Author(s):  
Ana Lúcia LOURENÇO ◽  
Niek De JAGER ◽  
Catina PROCHNOW ◽  
Danilo Antonio MILBRANDT DUTRA ◽  
Cornelis J. KLEVERLAAN

2016 ◽  
Vol 30 (12) ◽  
pp. 1650146 ◽  
Author(s):  
Lele Tao ◽  
Chuanghua Yang ◽  
Liyuan Wu ◽  
Lihong Han ◽  
Yuxin Song ◽  
...  

In this paper, elastic properties of stanene under equiaxial or uniaxial tensions along armchair and zigzag directions are investigated by first-principles calculations. The stress–strain relation is calculated and the relaxation of the internal atom positions is analyzed. The high-order elastic constants are calculated by fitting the polynomial expressions. The Young’s modulus and Poisson ratio of the stanene is calculated to be 24.14 N/m and 0.39 N/m, respectively. The stanene exhibits lower Young’s modulus than those of the proceeding group IV elements, which is attributed to the smaller [Formula: see text]–[Formula: see text] bond energy in stanene than those of silicene and germanene. Calculated values of ultimate stresses and strains, second-order elastic constants (SOCEs) and the in-plane Young’s modulus are all positive. It proves that stanene is mechanically stable.


2009 ◽  
Vol 4 ◽  
pp. 65-77 ◽  
Author(s):  
Veena Verma ◽  
Keya Dharamvir

Various gold nanowires with very small cross-sections (few atoms) have been studied using the Gupta potential. Gold nanowire icosa structure is found to be most stable among structures studied. The values of cohesive energy, Young’s modulus and shear modulus have been computed and all the values (except poisson ratio) are more than that of bulk gold. Another striking observation about gold nanostructures is that the Young’s modulus increases with tube radius whereas shear modulus decreases.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 129
Author(s):  
Wei Bi ◽  
Shunping Sun ◽  
Shaoyi Bei ◽  
Yong Jiang

Molybdenum silicides are attractive high-temperature structural materials because of their excellent thermal stability and outstanding oxidation resistance at high temperatures. First-principles calculations were employed to investigate the effect of alloying elements (Cr, Nb, V, W, Al, Ga, and Ge) on the mechanical properties of Mo3Si. The structural stabilities of doped Mo3Si were calculated, showing that the Pm-3n structure was stable at the investigated low-doping concentration. The calculated elastic constants have also evaluated some essential mechanical properties of doped Mo3Si. Cr- and V-doping decreased the elastic modulus, while Al- and Nb-doping slightly increased the shear and Young’s modulus of Mo3Si. Furthermore, V-, Al- and Nb-doping decreased the B/G and Poisson ratio, suggesting that these elements could form strong covalent bonds, and decrease shear deformation and alloy ductility. Based on the three-dimensional contours and two-dimensional projection of the elastic modulus, Cr- and V-doping exhibited a significant influence on the anisotropy of the shear and Young’s modulus. According to charge density and density of states, the electronic structures of alloyed Mo3Si were further analyzed to reveal the doping effects.


Sign in / Sign up

Export Citation Format

Share Document