Near surface geological mapping with Rayleigh wave imaging in Inner Mongolia, China

2019 ◽  
Author(s):  
Qingchun Li ◽  
Guangzhou Shao ◽  
Xinxin Li ◽  
Jun Liu ◽  
Qin Li ◽  
...  
Author(s):  
J. H. Redding

AbstractBy the end of 1986, over 400 km of high pressure (70 bar) natural gas pipeline will have been constructed in the Irish Republic, much of it laid in sparsely populated rural areas where topography, hydrology, near surface geology and ground conditions can significantly influence construction feasibility and cost. Identifying, quantifying and (where possible) avoiding areas of potential difficulty or hazard are aspects of route selection to which engineering geology can make an important contribution. This contribution is discussed in relation to the Cork-Dublin pipeline completed in 1982, and the Limerick, Waterford and Mallow lines due for completion this year. In particular, the application and merits of stereo aerial photographic interpretation, superficial geological mapping and field study are outlined, together with the use of more traditional methods of site investigation. Attention is focussed on indigenous engineering geological problems associated with shallow rock, limestone karst, peat bog and poorly drained alluvial and morainic soils. Data acquisition and presentation are discussed within the overall context of civil engineering contract preparation and administration. The usefulness of this approach, particularly for predicting and minimising construction costs, forestalling claims and generally facilitating on-site supervision, is emphasised.


2017 ◽  
Vol 16 (4) ◽  
pp. 289-297
Author(s):  
D. Yu. Snezgkov ◽  
S. N. Leonovich

The existing non-destructive testing system of structure concrete is actually orientated on the usage of longitudinal acoustical waves. This is due to simplicity of technical realization for measuring velocity (time) of acoustical pulse propagation in bulk concrete. But a reverse side of simple measuring procedure is a loss of additional information on concrete which is contained in the accepted acoustical signal. Therefore usage of an ultrasonic concrete testing method is limited by assessment of its strength. Joint usage of several wave types, so-called multi-wave testing, allows to refine metrology parameters of the ultrasonic method and to gain more information while determining physical and mechanical properties of concrete in laboratory and in situ conditions. The paper considers testing of elongated concrete elements and structures by an ultrasonic pulsing method on the basis of longitudinal subsurface and Rayleigh waves. It has been proposed to use methodology for time selection of wave components according to amplitude parameter and it has been applied for standard acoustical transformers with considerable reverberation time and not possessing spatial selectivity Basic principle of the proposed methodology is visual (according to oscillogram of the received signal) determination of characteristic time moments which are used for calculation of differential value of a propagation velocity in the Rayleigh wave impulse. The paper presents results pertaining to simulation of acoustical pulse propagation on the basis of 0.15 m and data of concrete ultrasonic in situ testing on measuring bases from 0.25 to 1.75 m. Advantage of large baseline for sonic test is a possibility for execution of a hundred percent inspection for surface of large-sized elements and structures, and so there is no need to make a selective inspection in some control areas as it is stipulated by provided by existing regulations. Responsivity of the Rayleigh wave parameters to near surface concrete defects permits quickly and efficiently to detect crack areas in a reinforced structure. Energy localization of a surface wave in a layer having width λ/2–λ provides a possibility to ignore reinforcement availability under appropriate selection of oscillation frequency. In addition to this, large measuring baseline makes it possible to lower effect of concrete structural inhomogeneity on statistical stability for pulse velocity assessment that ultimately reveals a possibility to register an appearance of concrete acoustical elasticity effect under in situ conditions.


Geophysics ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. R805-R814 ◽  
Author(s):  
Zhen Xing ◽  
Alfredo Mazzotti

When reliable a priori information is not available, it is difficult to correctly predict near-surface S-wave velocity models from Rayleigh waves through existing techniques, especially in the case of complex geology. To tackle this issue, we have developed a new method: two-grid genetic-algorithm Rayleigh-wave full-waveform inversion (FWI). Adopting a two-grid parameterization of the model, the genetic algorithm inverts for unknown velocities and densities at the nodes of a coarse grid, whereas the forward modeling is performed on a fine grid to avoid numerical dispersion. A bilinear interpolation brings the coarse-grid results into the fine-grid models. The coarse inversion grid allows for a significant reduction in the computing time required by the genetic algorithm to converge. With a coarser grid, there are fewer unknowns and less required computing time, at the expense of the model resolution. To further increase efficiency, our inversion code can perform the optimization using an offset-marching strategy and/or a frequency-marching strategy that can make use of different kinds of objective functions and allows for parallel computing. We illustrate the effect of our inversion method using three synthetic examples with rather complex near-surface models. Although no a priori information was used in all three tests, the long-wavelength structures of the reference models were fairly predicted, and satisfactory matches between “observed” and predicted data were achieved. The fair predictions of the reference models suggest that the final models estimated by our genetic-algorithm FWI, which we call macromodels, would be suitable inputs to gradient-based Rayleigh-wave FWI for further refinement. We also explored other issues related to the practical use of the method in different work and explored applications of the method to field data.


2015 ◽  
Vol 771 ◽  
pp. 179-182 ◽  
Author(s):  
Yekti Widyaningrum ◽  
Sungkono ◽  
Alwi Husein ◽  
Bagus Jaya Santosa ◽  
Ayi S. Bahri

Rayleigh wave dispersion is intensively used to determine near surface of shear wave velocity (Vs). The method has been known as non-invasive techniques which is costly effective and efficient to characterize subsurface. Acquisition of the Rayleigh wave can be approached in two ways, i.e. passive and active. Passive seismic is accurate to estimate dispersion curve in low frequency, although it is not accurate for high frequency. While active seismic is vice versa of passive seismic. The high frequency of Rayleigh wave dispersion reflects to near surface and vice versa. Therefore, we used the combination of both passive and active seismic method to overcome the limitations of each method. The Vs which is resulted by inversion of the combining data gives accurate model if compared to log and standard penetration test (N-SPT) data. Further, the approach has been used to characterize LUSI (Lumpur Sidoarjo) embankments. The result shows that embankment material (0-12 m) has higher Vs than that lower embankment material.


2007 ◽  
Vol 62 (3) ◽  
pp. 244-253 ◽  
Author(s):  
Jianghai Xia ◽  
Jonathan E. Nyquist ◽  
Yixian Xu ◽  
Mary J.S. Roth ◽  
Richard D. Miller

2021 ◽  
Author(s):  
Rowan Romeyn ◽  
Alfred Hanssen ◽  
Andreas Köhler ◽  
Bent Ole Ruud ◽  
Helene Meling Stemland ◽  
...  

<p>A class of short-duration seismic events were recorded on dense, temporary geophone arrays deployed in Adventdalen, Svalbard in spring and autumn 2019. A similar class of events have also been detected in seismic records from the SPITS seismic array located on Janssonhaugen in Adventdalen, that has been in continuous operation since the 1990’s. In both cases, estimated source positions are dominantly local and cluster around frost polygon, ice-wedge geomorphologies. Correlation with periods of rapidly cooling air temperature and consequent thermal stress build-up in the near surface are also observed. These events are consequently interpreted as frost quakes, a class of cryoseism. The dense, temporary arrays allowed high quality surface-wave dispersion images to be generated, that show potential to monitor structure and change in permafrost through passive seismic deployments. While the lower wavenumber resolution of the sparser SPITS array is less suited to imaging the near-surface in detail, the long continuous recording period gives us a unique insight into the temporal occurrence of frost quakes. This allows us, for example, to better understand the dynamic processes leasing to frost quakes by correlating temporal occurrence with models of thermal stress in the ground, constrained by thermistor temperature measurements from a nearby borehole.</p>


Sign in / Sign up

Export Citation Format

Share Document