High-resolution multiproxy climatic records from ice cores, tree-rings, corals and documentary sources using eigenvector techniques and maps: assessment of recovered signal and errors

The Holocene ◽  
2002 ◽  
Vol 12 (4) ◽  
pp. 401-419 ◽  
Author(s):  
David A. Fisher
2004 ◽  
Vol 155 (6) ◽  
pp. 233-237
Author(s):  
Klaus Felix Kaiser ◽  
Matthias Schaub

A comparison of different high-resolution archives, such as tree rings, ice cores and marine varves show high degrees of similarity and reveal significant hemispheric climatic events (Older Dryas, Gerzensee Deviation, onset of Younger Dryas). Even the eruption of the Laachersee volcano (Eifel, Germany) 13 070 years ago is recorded synchronously in all of these archives. Trees from the Zurich area extend the absolute tree-ring chronology back to 12 449 years BP. This extension is relevant for quaternary research as well as for calibrating the 14C curve and other archives. The recent findings from the Uetliberg may provide further progress in filling the existing gaps in the Lateglacial tree-ring chronologies.


2020 ◽  
Vol 117 (52) ◽  
pp. 32845-32847
Author(s):  
Ulf Büntgen ◽  
Clive Oppenheimer

The mathematical aberration of the Gregorian chronology’s missing “year zero” retains enduring potential to sow confusion in studies of paleoclimatology and environmental ancient history. The possibility of dating error is especially high when pre-Common Era proxy evidence from tree rings, ice cores, radiocarbon dates, and documentary sources is integrated. This calls for renewed vigilance, with systematic reference to astronomical time (including year zero) or, at the very least, clarification of the dating scheme(s) employed in individual studies.


Radiocarbon ◽  
2020 ◽  
pp. 1-10
Author(s):  
Marek Krąpiec ◽  
Andrzej Rakowski ◽  
Jacek Pawlyta ◽  
Damian Wiktorowski ◽  
Monika Bolka

ABSTRACT Radiocarbon (14C) analyses are commonly used to determine the absolute age of floating tree-ring chronologies. At best, with the wiggle-matching method, a precision of 10 years could be achieved. For the early Middle Ages, this situation has been markedly improved by the discovery of rapid changes in atmospheric 14C concentrations in tree-rings dated to 774/775 and 993/994 AD. These high-resolution changes can be used to secure other floating tree-ring sequences to within 1-year accuracy. While a number of studies have used the 774 even to secure floating tree-ring sequences, the less abrupt 993 event has not been so well utilized. This study dates a floating pine chronology from Ujście in Wielkopolska (Greater Poland) (NW Poland), which covers the 10th century period and is critical for studies on the beginning of the Polish State to the calendar years 859–1085 AD using the changes in single year radiocarbon around 993/4 AD.


2021 ◽  
Vol 68 ◽  
pp. 126872
Author(s):  
Renata S. Amais ◽  
Pedro S. Moreau ◽  
Danielle S. Francischini ◽  
Rafael Magnusson ◽  
Giuliano M. Locosselli ◽  
...  

2016 ◽  
Vol 10 (6) ◽  
pp. 2763-2777 ◽  
Author(s):  
Carmen P. Vega ◽  
Elisabeth Schlosser ◽  
Dmitry V. Divine ◽  
Jack Kohler ◽  
Tõnu Martma ◽  
...  

Abstract. Three shallow firn cores were retrieved in the austral summers of 2011/12 and 2013/14 on the ice rises Kupol Ciolkovskogo (KC), Kupol Moskovskij (KM), and Blåskimen Island (BI), all part of Fimbul Ice Shelf (FIS) in western Dronning Maud Land (DML), Antarctica. The cores were dated back to 1958 (KC), 1995 (KM), and 1996 (BI) by annual layer counting using high-resolution oxygen isotope (δ18O) data, and by identifying volcanic horizons using non-sea-salt sulfate (nssSO42−) data. The water stable isotope records show that the atmospheric signature of the annual snow accumulation cycle is well preserved in the firn column, especially at KM and BI. We are able to determine the annual surface mass balance (SMB), as well as the mean SMB values between identified volcanic horizons. Average SMB at the KM and BI sites (0.68 and 0.70 mw. e. yr−1) was higher than at the KC site (0.24 mw. e. yr−1), and there was greater temporal variability as well. Trends in the SMB and δ18O records from the KC core over the period of 1958–2012 agree well with other previously investigated cores in the area, thus the KC site could be considered the most representative of the climate of the region. Cores from KM and BI appear to be more affected by local meteorological conditions and surface topography. Our results suggest that the ice rises are suitable sites for the retrieval of longer firn and ice cores, but that BI has the best preserved seasonal cycles of the three records and is thus the most optimal site for high-resolution studies of temporal variability of the climate signal. Deuterium excess data suggest a possible effect of seasonal moisture transport changes on the annual isotopic signal. In agreement with previous studies, large-scale atmospheric circulation patterns most likely provide the dominant influence on water stable isotope ratios preserved at the core sites.


Antiquity ◽  
2010 ◽  
Vol 84 (323) ◽  
pp. 202-215 ◽  
Author(s):  
M.G.L. Baillie

Good archaeology relies on ever more precise dates – obtainable, notably, from ice-cores and dendrochronology. These each provide year-by-year sequences, but they must be anchored at some point to real historical time, by a documented volcanic eruption, for example. But what if the dating methods don't agree? Here the author throws down the gauntlet to the ice-core researchers – their assigned dates are several years too old, probably due to the spurious addition of ‘uncertain’ layers. Leave these out and the two methods correlate exactly…


2002 ◽  
Vol 58 (2) ◽  
pp. 197-199 ◽  
Author(s):  
Julio L. Betancourt ◽  
Henri D. Grissino-Mayer ◽  
Matthew W. Salzer ◽  
Thomas W. Swetnam

AbstractSo-called annual banding has been identified in a number of speleothems in which the number of bands approximates the time interval between successive U-series dates. The apparent annual resolution of speleothem records, however, remains largely untested. Here we statistically compare variations in band thickness from a late Holocene stalagmite in Carlsbad Cavern, Southern New Mexico, USA, with three independent tree-ring chronologies form the same region. We found no correspondence. Although there may be various explanations for the discordance, this limited exercise suggests that banded stalagmites should be held to the same rigorous standards in chronology building and climatic inference as annually resolved tree rings, corals, and ice cores.


2021 ◽  
Author(s):  
Imogen Gabriel ◽  
Gill Plunkett ◽  
Peter Abbott ◽  
Bergrún Óladóttir ◽  
Joseph McConnell ◽  
...  

<p>Volcanic eruptions are considered as one of the primary natural drivers for changes in the global climate system and understanding the impact of past eruptions on the climate is integral to adopt appropriate responses towards future volcanic eruptions.</p><p>The Greenland ice core records are dominated by Icelandic eruptions, with several volcanic systems (Katla, Hekla, Bárðarbunga-Veiðivötn and Grimsvötn) being highly active throughout the Holocene. A notable period of increased Icelandic volcanic activity occurred between 500-1250 AD and coincided with climatic changes in the North Atlantic region which may have facilitated the Viking settlement of Greenland and Iceland. However, a number of these volcanic events are poorly constrained (duration and magnitude). Consequently, the Greenland ice cores offer the opportunity to reliably reconstruct past Icelandic volcanism (duration, magnitude and frequency) due to their high-resolution, the proximity of Iceland to Greenland and subsequent increased likelihood of volcanic fallout deposits (tephra particles and sulphur aerosols) being preserved. However, both the high frequency of eruptions between 500-1250 AD and the geochemical similarity of Iceland’s volcanic centres present challenges in making the required robust geochemical correlations between the source volcano and the ice core records and ultimately reliably assessing the climatic-societal impacts of these eruptions.</p><p>To address this, we use two Greenland ice core records (TUNU2013 and B19) and undertake geochemical analysis on tephra from the volcanic events in the selected time window which have been detected and sampled using novel techniques (insoluble particle peaks and sulphur acidity peaks). Further geochemical analysis of proximal material enables robust correlations to be made between the events in the ice core records and their volcanic centres. The high-resolution of these polar archives provides a precise age for the event and when utilised alongside other proxies (i.e. sulphur aerosols), both the duration and magnitude of these eruptions can be constrained, and the climatic-societal impacts of these eruptions reliably assessed.</p>


Sign in / Sign up

Export Citation Format

Share Document