scholarly journals The importance of “year zero” in interdisciplinary studies of climate and history

2020 ◽  
Vol 117 (52) ◽  
pp. 32845-32847
Author(s):  
Ulf Büntgen ◽  
Clive Oppenheimer

The mathematical aberration of the Gregorian chronology’s missing “year zero” retains enduring potential to sow confusion in studies of paleoclimatology and environmental ancient history. The possibility of dating error is especially high when pre-Common Era proxy evidence from tree rings, ice cores, radiocarbon dates, and documentary sources is integrated. This calls for renewed vigilance, with systematic reference to astronomical time (including year zero) or, at the very least, clarification of the dating scheme(s) employed in individual studies.

Antiquity ◽  
2010 ◽  
Vol 84 (323) ◽  
pp. 202-215 ◽  
Author(s):  
M.G.L. Baillie

Good archaeology relies on ever more precise dates – obtainable, notably, from ice-cores and dendrochronology. These each provide year-by-year sequences, but they must be anchored at some point to real historical time, by a documented volcanic eruption, for example. But what if the dating methods don't agree? Here the author throws down the gauntlet to the ice-core researchers – their assigned dates are several years too old, probably due to the spurious addition of ‘uncertain’ layers. Leave these out and the two methods correlate exactly…


2002 ◽  
Vol 58 (2) ◽  
pp. 197-199 ◽  
Author(s):  
Julio L. Betancourt ◽  
Henri D. Grissino-Mayer ◽  
Matthew W. Salzer ◽  
Thomas W. Swetnam

AbstractSo-called annual banding has been identified in a number of speleothems in which the number of bands approximates the time interval between successive U-series dates. The apparent annual resolution of speleothem records, however, remains largely untested. Here we statistically compare variations in band thickness from a late Holocene stalagmite in Carlsbad Cavern, Southern New Mexico, USA, with three independent tree-ring chronologies form the same region. We found no correspondence. Although there may be various explanations for the discordance, this limited exercise suggests that banded stalagmites should be held to the same rigorous standards in chronology building and climatic inference as annually resolved tree rings, corals, and ice cores.


Radiocarbon ◽  
1980 ◽  
Vol 22 (3) ◽  
pp. 950-961 ◽  
Author(s):  
Jeffrey Klein ◽  
Juan Carlos Lerman ◽  
Paul E Damon ◽  
Timothy Linick

Radiocarbon dates calculated from the ratio of modern carbon-14 activity and sample activity and the half-life of carbon-14 need to be calibrated to compensate for temporal variations in the concentration of carbon-14 in the atmosphere. Development of a suitable calibration scheme has been an ongoing process of the last twenty years, ever since the discovery of variations in historical times of the atmospheric radiocarbon content which parallel climatic and solar phenomena (de Vries, 1958; 1959) and the recent depletion due to industrial effects (Suess, 1955).


2007 ◽  
Vol 67 (2) ◽  
pp. 292-296 ◽  
Author(s):  
Brian Lutz ◽  
Gregory Wiles ◽  
Thomas Lowell ◽  
Joshua Michaels

AbstractMany Northern Hemisphere paleoclimatic records, including ice cores, speleothems, lake sediments, ocean cores and glacier chronologies, indicate an abrupt cooling event about 8200 cal yr BP. A new well-dated series of sediment cores taken from Brown's Lake, a kettle in Northeast Ohio, shows two closely spaced intervals of loess deposition during this time period. The source of loess is uncertain; however, it is likely from an abandoned drainage and former glacial lake basin located to the north of the stagnant ice topography that gave rise to the kettle lake. Strong visual stratigraphy, loss on ignition data and sediment grain size analyses dated with 3 AMS radiocarbon dates place the two intervals of loess deposition between 8950 and 8005 cal yr BP. The possibility of a two-phase abrupt climate change at this time is a finding that has been suggested in other research. This record adds detail to the spatial extent and timing as well as possible structure of the 8.2-ka abrupt climate change event.


Radiocarbon ◽  
2012 ◽  
Vol 54 (3-4) ◽  
pp. 423-434 ◽  
Author(s):  
Malcolm H Wiener

Radiocarbon dating encounters (1) problems of reservoir effects and regional/seasonal variation affecting the chronological reliability of measurements, (2) problems of calibration of measurements via comparison with tree segments of known dendrochronological dates, (3) problems of statistical inference with respect to the data pre- and post-calibration, and (4) problems of the analysis and communication of information to archaeologists, historians, and other interested parties. This paper considers the special characteristics of each of the problem areas indicated in order to improve communication between14C scientists and the disciplines of archaeology, anthropology, and ancient history.


2021 ◽  
Author(s):  
Feiteng Wang ◽  
Xin Zhang ◽  
Fanglong Wang ◽  
Mengyuan Song ◽  
Zhongqin Li ◽  
...  

Abstract. The outbreak of COVID-19 unprecedently impacts the world in many aspects. Air pollutants have been largely reduced in cities worldwide, as reported by numerous studies. We investigated the daily concentrations of SO2, NO2, CO and PM2.5 monitored across the Xinjiang Uygur Autonomous Region (Xinjiang), China, from 2019 through 2020. The variation in NO2 showed responding dips when the local governments imposed mobility restriction measures, while SO2, CO and PM2.5 did not consistently correspond to NO2. This difference indicates that the restriction measures targeted traffic majorly. Sampling from two snow pits separately dug in 2019 and 2020 in Urumqi No.1 (UG1), we analysed water-stable isotopes, soluble ions, black and organic carbon (BC and OC). BC and OC show no differences in the snow-pit profiles dated from 2018 to 2020. The concentrations of human activity induced soluble ions (K+, Cl−, SO42− and NO3−) in the snow shrank to 20 %–30% in 2020 of their respective concentrations in 2019, while they increased 2–3.5-fold in 2019 from before 2018. We suggest that the pandemic has already left marks in the cryosphere and outlook that more evidence would be exposed in ice cores, tree rings, and other archives in the future.


2006 ◽  
Vol 2 (6) ◽  
pp. 1051-1073 ◽  
Author(s):  
O. Solomina ◽  
G. Wiles ◽  
T. Shiraiwa ◽  
R. D’Arrigo

Abstract. Tree rings, ice cores and glacial geologic histories for the past several centuries offer an opportunity to characterize climate variability and to identify the key climate parameters forcing glacier expansions. A newly developed larch ring-width chronology is presented for Kamchatka that is sensitive to past summer temperature variability. This record provides the basis to compare with other proxy records of inferred temperature and precipitation change from ice core and glacier records, and to characterize climate for the region over the past 400 years. Individual low growth years in the larch record are associated with several known and proposed volcanic events that have been observed in other proxy records from the Northern Hemisphere. Comparison of the tree-rings with an ice core record of melt feature index for Kamchatka's Ushkovsky volcano confirms a 1–3 year dating accuracy for this ice core series over the late 18th to 20th centuries. Decadal variations of low summer temperatures (tree-ring record) and high annual precipitation (ice core record) are broadly consistent with intervals of positive mass balance measured and estimated at several glaciers, and with moraine building, provides a basis to interpret geologic glacier records.


2019 ◽  
Author(s):  
Susanne Preunkert ◽  
Michel Legrand ◽  
Stanislav Kutuzov ◽  
Patrick Ginot ◽  
Vladimir Mikhalenko ◽  
...  

Abstract. This study reports on the glaciochemistry of a deep ice core (182 m long) drilled in 2009 at Mount Elbrus (43°21′ N, 42°26′ E; 5115 m above sea level) in the Caucasus, Russia. Radiocarbon dating of the particulate organic carbon fraction in the ice suggests a basal ice age of ~ 1670 ± 400 cal yr BP. Based on chemical stratigraphy, the upper 168.6 m of the core were dated by counting annual layers. The seasonally resolved chemical records cover the years 1774–2009 (Common Era), thus, being useful to reconstruct many aspects of atmospheric pollution in central Europe from pre-industrial times to present-day. After having examined the extent to which the arrival of large dust plumes originating from Sahara and Middle East modifies the chemical composition of the Elbrus (ELB) snow and ice layers, we focus on the sulfur pollution. The ELB sulfate levels indicate a four- and six-fold increase from 1774–1900 to 1980–1995 in winter and summer, respectively. Remaining close to 116 ± 28 ppb during the nineteen century, the summer sulfate levels started to rise at a mean rate of ~ 6 ppb per year from 1920 to 1950. The summer sulfate increase accelerated between 1950 and 1975 (11 ppb per year), levels reaching a maximum between 1980 and 1990 (730 ± 152 ppb) and subsequently decreasing to 630 ± 130 ppb at the beginning of the twenty first century. Long-term sulfate trends observed in the ELB ice cores are compared with those previously obtained in Alpine ice, the most important difference consists in a more pronounced decrease of the sulfur pollution over the three last decades in western than central Europe.


Sign in / Sign up

Export Citation Format

Share Document