Use of RVT for Computation of In-Structure Response Spectra and Peak Responses and Comparison to Time History and Response Spectrum Analysis

2018 ◽  
Vol 34 (4) ◽  
pp. 1913-1930 ◽  
Author(s):  
Irmela Zentner

The random vibration theory offers a framework for the conversion of response spectra into power spectral densities (PSDs) and vice versa. The PSD is a mathematically more suitable quantity for structural dynamics analysis and can be straightforwardly used to compute structural response in the frequency domain. This allows for the computation of in-structure floor response spectra and peak responses by conducting only one structural analysis. In particular, there is no need to select or generate spectrum-compatible time histories to conduct the analysis. Peak response quantities and confidence intervals can be computed without any further simplifications such as currently used in the response spectrum method, where modal combination rules have to be derived. In contrast to many former studies, the Arias intensity-based definition of strong-motion duration is adopted here. This paper shows that, if the same definitions of strong-motion duration and modeling assumptions are used for time history and RVT computations, then the same result can be expected. This is illustrated by application to a simplified model of a reactor building.

Author(s):  
R. E. Spears

A method has been developed which takes a seed earthquake time history and modifies it to produce given design response spectra. It is a multi-step process with an initial scaling step and then multiple refinement steps. It is unique in the fact that both the acceleration and displacement response spectra are considered when performing the fit (which primarily improves the low frequency acceleration response spectrum accuracy). Additionally, no matrix inversion is needed. The features include encouraging the code acceleration, velocity, and displacement ratios and attempting to fit the pseudo velocity response spectrum. Also, “smoothing” is done to transition the modified time history to the seed time history at its start and end. This is done in the time history regions below a cumulative energy of 5% and above a cumulative energy of 95%. Finally, the modified acceleration, velocity, and displacement time histories are adjusted to start and end with an amplitude of zero (using Fourier transform techniques for integration).


Author(s):  
Satoru Kai ◽  
Tomoyoshi Watakabe ◽  
Naoaki Kaneko ◽  
Kunihiro Tochiki ◽  
Makoto Moriizumi ◽  
...  

The piping in a nuclear power plant is laid across multiple floors of a single building or two buildings, which are supported at many points. As the piping is excited by multiple-inputs from the supporting points during an earthquake, seismic response analysis by multiple excitations is needed to obtain the exact seismic response of the piping. However, few experiments involving such multiple excitation have been performed to verify the validity of multiple excitation analysis. Therefore, analysis of the seismic design of piping in Japan is performed by the enveloped Floor Response Spectrum (FRS), which covers all floor response spectra at all supporting points. The piping response estimated by enveloped FRS is conservative in most cases compared with the actual seismic response by multiple excitations. To perform rational seismic design and evaluation, it is important to investigate the seismic response by multiple excitations and to verify the validity of the analytical method by multiple excitation test. This paper reports the validation results of the multiple-excitation analysis of piping compared with the results of the multiple excitations shaking test using triple uni-axial shaking table and a 3-dimensional piping model (89.1mm diameter and 5.5mm thickness). Three directional moments from the analysis and the shaking test were compared on the validation. As the result, it is confirmed that the analysis by multiple time history excitation corresponds with the test result.


2001 ◽  
Vol 17 (2) ◽  
pp. 221-234 ◽  
Author(s):  
Anil K. Chopra ◽  
Chatpan Chintanapakdee

A new measure of earthquake demand, the drift spectrum has been developed as an adjunct to the response spectrum, a central concept in earthquake engineering, in calculating the internal deformations of a structure due to near-fault ground motions with pronounced coherent pulses in the velocity and displacement histories. Compared in this paper are certain aspects of the elastic structural response to near-fault and far-fault ground motions. It is demonstrated that (1) the difference between drift and response spectra are not unique to near-fault ground motions; these differences simply reflect higher-mode response, which is larger due to near-fault ground motions; (2) response spectrum analysis (RSA) using existing modal combination rules can provide an estimate of structural response that is accurate to a useful degree; (3) these modal combination rules are similarly accurate for near-fault and far-fault ground motions although the underlying assumptions are not satisfied by near-fault excitations; and (4) RSA is preferable over the drift spectrum in computing structural response because it represents standard engineering practice and is applicable to a wide variety of structures.


Author(s):  
Thomas W. Houston ◽  
Greg E. Mertz ◽  
Michael C. Costantino ◽  
Carl J. Costantino

Time history records are typically used to define the seismic demand for critical structures for which soil structure interaction (SSI) analyses are often required. Criteria for the development of time histories is provided in ASCE 43-05. The time histories are based on a close fit of 5% damped target response spectra. Recent experience has demonstrated that for cases where the transfer functions associated with the structural response are narrow, the ASCE 43-05 criteria can under-predict peak spectral responses in the structure by as much as 70% in some frequency ranges. One potential solution for this issue is to reinstate requirements for matching target response spectra for multiple damping levels to ASCE 43-05 criteria. However, recent probabilistic seismic hazard analyses (PSHA) do not generally contain spectra for multiple damping levels. This paper proposes an approach to generate target spectra at multiple damping levels, given the 5% damped target spectrum provided by the PSHA, utilizing catalogs of recorded earthquakes. The process of fitting time histories to multiple damped spectra is effective in correcting defficiencies observed in the computed structural response when time histories meeting the ASCE 43-05 fitting criteria are used.


2011 ◽  
Vol 261-263 ◽  
pp. 292-298 ◽  
Author(s):  
Jie Song ◽  
Zhi Gang Song ◽  
Yi Jie Shen

Pedestrian loads are affected by such uncertain parameters as walking step frequency, step length, dynamic load factors and phases of harmonic components, which lead to the uncertainties of structural response. A new method for calculation random response spectrum based on uniform design is introduced to reduce calculation work. A few representative samples of loads time histories are simulated using uniform design, and then the RMS acceleration response spectrums are obtained by dynamic time-history analysis of beam structures with different spans and damping ratios. The RMS acceleration response spectrums which have certain percentiles are obtained by reliability analysis based on response surface. Ultimately the general forms of RMS acceleration response spectrums are deduced from the analyses of sensitivities for damping ratio and span.


2018 ◽  
Vol 4 (12) ◽  
pp. 2926
Author(s):  
Pouyan Ashrafzadeh ◽  
Arash Kheyrolahi

Equivalent static, response spectrum and time history analysis are the well-known analysis methods that traditionally proposed. These methods are highly accurate but requires a great deal of time to match accelerations and the number of analyses, in the other words these methods are time consuming methods. Hence recently the structures are investigated using the durability time method, which plays an essential role in reducing the number of analyses that needs to be created; In fact, the durability time method is a new method of seismic analysis that is presented with a minimum number of time histories analysis. In this method the structure is placed under the influence of an increasing dynamic stimulation, structural response has been investigated over time and evaluated according to the corresponding response to different levels of stimulation intensity, strengths and weaknesses, and structural performance. In this study, steel folding frameworks with 5, 10 and 15 floors were investigated under two analytical methods (Time durability and Time histories methods). At first, the frameworks will be exposed under history of Imperial Governor, Kobe and Lumaprita earthquakes and analysis by finite element software ABAQUS. Then, based on the three analytical functions, the durability is investigated and the results are compared with each other. Finally, the behavior of the structures discussion and conclusion. The results show that the durability analysis method for earthquakes with higher intensity and time is more efficient, and for the Time-less earthquakes by time history method parametrically have a parametrical difference of 5%.


Author(s):  
R. E. Spears

A method has been developed which takes a seed earthquake time history and modifies it to produce a time-history with a given design response spectrum. It is a multistep process with an emphasis on maintaining phasing during the strong motion duration. Initially, the seed earthquake time history is broken into a series of separate time histories which added together produce the original time history. Each separate time history is drift corrected using modifications only outside the strong motion duration of the seed earthquake time history. This allows the separate time histories to be individually scaled to improve the response spectrum match while the phase of the motion during the strong motion duration remains unchanged. To further improve the design response spectrum match, low cycle, low energy waves are added. This is primarily to control the response at higher frequency. These waves are tuned to improve the response at existing peaks.


1983 ◽  
Vol 105 (1) ◽  
pp. 35-41
Author(s):  
M. J. Yan

A consistent technique is derived for generating floor response spectra for equipment in nuclear reactor systems using response spectral analysis. The use of this technique eliminates the requirement for a time history analysis. The technique is based on the dynamic theory of coupling the supporting building with a very light spring-mass system representing the equipment. The response of the spring-mass system in the coupled systems is the floor response spectrum at the spring-mass system frequency. Resonant and off-resonant cases are derived separately. This technique is more efficient in the use of computer time than the conventional time history techniques. Moreover, a more realistic response spectrum is generated by this technique.


2013 ◽  
Vol 756-759 ◽  
pp. 4482-4486
Author(s):  
Chun Gan ◽  
Xue Song Luo

In recent years, frequent earthquakes have caused great casualties and economic losses in China. And in the earthquake, damage of buildings and the collapse is the main reason causing casualties. Therefore, in the design of constructional engineering, a seismicity of architectural structure is the pressing task at issue. Through time history analysis method, this paper analyzes the time history of building structural response and then it predicts the peak response of mode by response spectrum analysis. Based on this, this paper constructs a numerical simulation model for the architecture by using finite element analysis software SATWE. At the same time, this paper also calculates the structure seismic so as to determine the design of each function structure in architectural engineering design and then provides reference for the realization of earthquake-resistant building.


2018 ◽  
Vol 10 (12) ◽  
pp. 4659 ◽  
Author(s):  
Yabin Chen ◽  
Longjun Xu ◽  
Xingji Zhu ◽  
Hao Liu

For seismic resilience-based design (RBD), a selection of recorded time histories for dynamic structural analysis is usually required. In order to make individual structures and communities regain their target functions as promptly as possible, uncertainty of the structural response estimates is in great need of reduction. The ground motion (GM) selection based on a single target response spectrum, such as acceleration or displacement response spectrum, would bias structural response estimates leading significant uncertainty, even though response spectrum variance is taken into account. In addition, resilience of an individual structure is not governed by its own performance, but depends severely on the performance of other systems in the same community. Thus, evaluation of resilience of a community using records matching target spectrum at whole periods would be reasonable because the fundamental periods of systems in the community may be varied. This paper presents a GM selection approach based on a probabilistic framework to find an optimal set of records to match multiple target spectra, including acceleration and displacement response spectra. Two major steps are included in that framework. Generation of multiple sub-spectra from target displacement response spectrum for selecting sets of GMs was proposed as the first step. Likewise, the process as genetic algorithm (GA), evolvement of individuals previously generated, is the second step, rather than using crossover and mutation techniques. A novel technique improving the match between acceleration response spectra of samples and targets is proposed as the second evolvement step. It is proved computationally efficient for the proposed algorithm by comparing with two developed GM selection algorithms. Finally, the proposed algorithm is applied to select GM records according to seismic codes for analysis of four archetype reinforced concrete (RC) frames aiming to evaluate the influence of GM selection considering two design response spectra on structural responses. The implications of design response spectra especially the displacement response spectrum and GM selection algorithm are summarized.


Sign in / Sign up

Export Citation Format

Share Document