Study on Piping Response Under Multiple Excitation: Part 2 — Validation for Multiple Excitation Analysis of Piping

Author(s):  
Satoru Kai ◽  
Tomoyoshi Watakabe ◽  
Naoaki Kaneko ◽  
Kunihiro Tochiki ◽  
Makoto Moriizumi ◽  
...  

The piping in a nuclear power plant is laid across multiple floors of a single building or two buildings, which are supported at many points. As the piping is excited by multiple-inputs from the supporting points during an earthquake, seismic response analysis by multiple excitations is needed to obtain the exact seismic response of the piping. However, few experiments involving such multiple excitation have been performed to verify the validity of multiple excitation analysis. Therefore, analysis of the seismic design of piping in Japan is performed by the enveloped Floor Response Spectrum (FRS), which covers all floor response spectra at all supporting points. The piping response estimated by enveloped FRS is conservative in most cases compared with the actual seismic response by multiple excitations. To perform rational seismic design and evaluation, it is important to investigate the seismic response by multiple excitations and to verify the validity of the analytical method by multiple excitation test. This paper reports the validation results of the multiple-excitation analysis of piping compared with the results of the multiple excitations shaking test using triple uni-axial shaking table and a 3-dimensional piping model (89.1mm diameter and 5.5mm thickness). Three directional moments from the analysis and the shaking test were compared on the validation. As the result, it is confirmed that the analysis by multiple time history excitation corresponds with the test result.

Author(s):  
Tomoyoshi Watakabe ◽  
Naoaki Kaneko ◽  
Shigekazu Aida ◽  
Akihito Otani ◽  
Makoto Moriizumi ◽  
...  

The piping in a nuclear power plant is laid across multiple floors of a single building or two buildings, which are supported at many points. As the piping is excited by multiple inputs from the supporting points during an earthquake, seismic response analysis by multiple excitations is needed to obtain the exact seismic response of the piping. However, few experiments involving such multiple excitations have been performed to verify the validity of multiple excitation analysis. Therefore, analysis of the seismic design of piping in Japan is performed by the enveloped Floor Response Spectrum (FRS), which covers all floor response spectra at all supporting points. The piping response estimated by enveloped FRS is conservative in most cases compared with the actual seismic response by multiple excitations. To perform rational seismic design and evaluation, it is important to investigate the seismic response by multiple excitations and verify the validity of the analysis method by multiple-excitation test. This paper reports on the result of the shaking test using triple uni-axial shaking tables and a 3-dimensional piping model (89.1mm in diameter and 5.5mm thickness). The piping model was fixed to three shaking tables, meaning three. Different inputs were possible. By the shaking test, dynamic behavior under multiple excitations was confirmed, and data to verify multiple-excitation analysis was obtained.


Author(s):  
Akihito Otani ◽  
Teruyoshi Otoyo ◽  
Hideo Hirai ◽  
Hirohide Iiizumi ◽  
Hiroshi Shimizu ◽  
...  

This paper, which is part of the series entitled “Development of an Evaluation Method for Seismic Isolation Systems of Nuclear Power Facilities”, shows the linear seismic response of crossover piping installed in a seismically isolated plant. The crossover piping, supported by both isolated and non-isolated buildings, deforms with large relative displacement between the two buildings and the seismic response of the crossover piping is caused by two different seismic excitations from the buildings. A flexible and robust structure is needed for the high-pressure crossover piping. In this study, shaking tests on a 1/10 scale piping model and FEM analyses were performed to investigate the seismic response of the crossover piping which was excited and deformed by two different seismic motions under isolated and non-isolated conditions. Specifically, as linear response analysis of the crossover piping, modal time-history analysis and response spectrum analysis with multiple excitations were carried out and the applicability of the analyses was confirmed. Moreover, the seismic response of actual crossover piping was estimated and the feasibility was evaluated.


2012 ◽  
Vol 5 ◽  
pp. 183-188
Author(s):  
Lian Zhen Zhang ◽  
Tian Liang Chen

Self-anchored suspension bridge is widely used in Chinese City bridge engineering for the past few years. Because the anchorage system of main cable has been changed from anchorage blocks to the ends of the girder, its’ dynamic mechanics behavior is greatly distinguished with the traditional earth anchored suspension bridge. This paper studies the dynamic characteristics and seismic response of one large-span self-anchored suspension bridge which is located in China/Shenyang city. Using a spatial dynamic analysis finite element mode, the dynamic characteristics are calculated out. An artificial seismic wave is adopted as the ground motion input which is fitted with acceleration response spectrum according to the Chinese bridge anti-seismic design code. Time-integration method is used to get the seismic time-history response. Geometry nonlinear effect is considered during the time-history analysis. At last, the dynamic characteristics and the behavior of earthquake response of this type bridge structure are discussed clearly. The research results can be used as the reference of seismic response analysis and anti-seismic design for the same type of bridge.


2014 ◽  
Vol 580-583 ◽  
pp. 1729-1733
Author(s):  
Ming Li ◽  
Yuan Qing Wang ◽  
Wei Tao ◽  
Bin Wang ◽  
Qing Xian Yu ◽  
...  

Rare study is done on floor response spectrum of super-high rise building, but it is an important condition for the seismic response analysis of floor subsidiary structure. Therefore, based on the early calculation model of China Financial Information Mansion, the floor response spectrum is calculated under different input ground motion. The floor and ground response spectrum is compared with each other from the seismic coefficient, dynamic amplification coefficient, characteristic period and the form of response spectrum. The results shows that: the floor seismic coefficient and the magnification coefficient are greater or smaller than the ground ones, the biggest difference of which is nearly 1 times; all the floor character period are greater than the ground ones, the biggest difference of which is over 60%; there are obvious differences between the floor and ground dynamic magnification factor spectra form under some conditions, of which the second peak of the former one is probably very large, even near to the peak of the first one, while the latter has no such phenomenon. Therefore, during the process of calculating the seismic response of floor subsidiary structure, it is necessary to consider the change of floor seismic coefficient, dynamic magnification factor, characteristic period and spectra form based on the main structure.


2018 ◽  
Vol 34 (4) ◽  
pp. 1913-1930 ◽  
Author(s):  
Irmela Zentner

The random vibration theory offers a framework for the conversion of response spectra into power spectral densities (PSDs) and vice versa. The PSD is a mathematically more suitable quantity for structural dynamics analysis and can be straightforwardly used to compute structural response in the frequency domain. This allows for the computation of in-structure floor response spectra and peak responses by conducting only one structural analysis. In particular, there is no need to select or generate spectrum-compatible time histories to conduct the analysis. Peak response quantities and confidence intervals can be computed without any further simplifications such as currently used in the response spectrum method, where modal combination rules have to be derived. In contrast to many former studies, the Arias intensity-based definition of strong-motion duration is adopted here. This paper shows that, if the same definitions of strong-motion duration and modeling assumptions are used for time history and RVT computations, then the same result can be expected. This is illustrated by application to a simplified model of a reactor building.


2020 ◽  
Vol 10 (6) ◽  
pp. 6500-6503
Author(s):  
D. D. Nguyen ◽  
C. N. Nguyen

Abstract-This study investigates the effects of Lead Rubber Bearings (LRBs) on Floor Response Spectra (FRS) of Nuclear Power Plant (NPP) structures. Three main structures in the Advanced Power Reactor 1400 (APR1400) NPP including the reactor containment building, an internal structure, and an auxiliary building were numerically developed in SAP2000. The structures were modeled using beam stick elements, and lumped masses were assigned to beam element nodes. All equivalent section properties of beam elements were calculated based on the designed cross-sections of the structures. A series of 40 ground motions with response spectra scaled to match the NRC 1.60 spectrum were utilized in numerical time-history analyses. Finally, a thorough comparison of FRS was conducted at different elevations of the structures, considering both with and without LRB. Numerical results showed that the FRS of base-isolated structures at higher elevations was significantly reduced compared to non-isolated structures. However, at lower elevations, the FRS was higher for the base-isolated structures compared to the non-isolated ones. Additionally, at a low-frequency range, roughly smaller than 3 Hz, the FRS of base-isolated structures was always greater than that of the non-isolated ones.


2021 ◽  
Vol 11 (23) ◽  
pp. 11152
Author(s):  
Mio Kobayashi ◽  
Toshihiro Noda ◽  
Kentaro Nakai ◽  
Toshihiro Takaine ◽  
Akira Asaoka

Safety measures are required for spherical gas holders to prevent them from malfunctioning even after a large earthquake. In this study, considering the strong nonlinearity of the ground and damage to the pile during an earthquake, a three-dimensional seismic response analysis of the holder–pile–ground interaction system was conducted for an actual gas holder on the soft ground consisting of alternating layers of sand and clay. In the analysis, the seismic response of the structure to strong ground motions of different durations with the same acceleration response spectrum was verified. The results show that the piles were relatively effective in controlling the settlement when the duration of the earthquake motion was long. This is because the axial force acting on the pile increased due to the redistribution of the holder load caused by the lowering of the effective confining pressure of the sand and clay layers during the earthquake, which increased the bearing capacity of the pile. In contrast, when the duration of the seismic motion was short, the piles had little effect on the reduction in the settlement because the maximum acceleration was higher than that in the former case, and the piles immediately lost their support function.


Author(s):  
Satoru Kai ◽  
Tomoyoshi Watakabe ◽  
Naoaki Kaneko ◽  
Kunihiro Tochiki ◽  
Makoto Moriizumi ◽  
...  

Piping in a nuclear power plant is usually laid across several floors of a single building or adjacent buildings, and is supported at many points. As the piping is excited by a large earthquake through multiple supporting points, seismic response analysis by multiple excitations within the range of plastic deformation of piping material is necessary to obtain the precise seismic response of the piping. The verification of the dynamic analysis method of piping under an elastic domain, which is excited by multiple seismic inputs, was performed in our study last year and the correspondence of a piping response between an analysis and an experiment have been confirmed [17][18]. However, few experiments under plastic deformation conditions have been performed to verify the validity of multiple excitation analysis under a plastic deformation range. To obtain better understanding of the behavior of piping under a large seismic input, it is important to investigate the seismic response by multiple excitations and to verify the validity of the analytical method by multiple excitation experiments. This paper reports the validation results of the seismic elastic-plastic time history analysis of piping compared with the results of the shaking test of a 3-dimensional piping model under a plastic deformation range using triple uni-axial shake table. Three directional strains from the analysis and the experiments were compared in order to validate the analysis method. As a result, it is confirmed that the elastic-plastic analysis by time history excitation shows good agreement with the test results.


Author(s):  
Satoru Kai ◽  
Akihito Otani ◽  
Naoaki Kaneko

Conventional response spectrum analysis is used for piping seismic design in Japan. When piping is supported by restraints and structures fixed on multiple buildings or floors, the envelope of the response spectra of all supporting points is typically applied for the piping under multiple excitations. The local vibration mode of long piping is difficult to excite by the far input from the vibrating part, so the analysis will overestimate the response. Considering each input from each building or floor can estimate more reasonable seismic response of the piping. The researches about seismic response analysis by multiple input excitations have been performed since 1960s and the analysis methods are used for piping design in the United State. There are a few experimental researches to verify the validity of the analysis method by multiple excitations. So an excitation test by multiple excitations planned to verify the validity of the application. This current study was performed as a preliminary investigation for the excitation test and it was to obtain the seismic response of a piping model by multiple excitations. Several kinds of analysis methods are compared and the characteristics of them are discussed.


Author(s):  
Michael O’Leary ◽  
William Godfrey

A partially buried fixed-base finite element model of a typical safety-related nuclear structure is analyzed for earthquake loads by the time history method, the response spectrum method, and the equivalent static load method. The spectra-consistent artificial time histories are generated with seed time histories in accordance with Standard Review Plan 3.7.1: Seismic Design Parameters [1] with target spectra based on Regulatory Guide 1.60: Design Response Spectra for Seismic Design of Nuclear Power Plants [2]. The response spectrum analyses are performed with the same target spectra used in generating the artificial time histories. The equivalent static loads are based on the nodal zero period accelerations from the fixed-base time history analyses. The seismic responses in a column in the structure are combined using algebraic sum, square root of the sum of the squares (SRSS), and the 100-40-40 rule in accordance with Regulatory Guide 1.92: Combining modal responses and spatial components in seismic response analysis [3]. The equivalent static load method is applied according to ASCE 4-15: Seismic Analysis of Safety-Related Nuclear Structures [4]. The resulting design forces and required reinforcement for a column in the structure are compared for each method along with the corresponding computational demand.


Sign in / Sign up

Export Citation Format

Share Document