scholarly journals Investigation of the Impact of Seed Record Selection on Structural Response

Author(s):  
Thomas W. Houston ◽  
Greg E. Mertz ◽  
Michael C. Costantino ◽  
Carl J. Costantino

Time history records are typically used to define the seismic demand for critical structures for which soil structure interaction (SSI) analyses are often required. Criteria for the development of time histories is provided in ASCE 43-05. The time histories are based on a close fit of 5% damped target response spectra. Recent experience has demonstrated that for cases where the transfer functions associated with the structural response are narrow, the ASCE 43-05 criteria can under-predict peak spectral responses in the structure by as much as 70% in some frequency ranges. One potential solution for this issue is to reinstate requirements for matching target response spectra for multiple damping levels to ASCE 43-05 criteria. However, recent probabilistic seismic hazard analyses (PSHA) do not generally contain spectra for multiple damping levels. This paper proposes an approach to generate target spectra at multiple damping levels, given the 5% damped target spectrum provided by the PSHA, utilizing catalogs of recorded earthquakes. The process of fitting time histories to multiple damped spectra is effective in correcting defficiencies observed in the computed structural response when time histories meeting the ASCE 43-05 fitting criteria are used.

2018 ◽  
Vol 34 (4) ◽  
pp. 1913-1930 ◽  
Author(s):  
Irmela Zentner

The random vibration theory offers a framework for the conversion of response spectra into power spectral densities (PSDs) and vice versa. The PSD is a mathematically more suitable quantity for structural dynamics analysis and can be straightforwardly used to compute structural response in the frequency domain. This allows for the computation of in-structure floor response spectra and peak responses by conducting only one structural analysis. In particular, there is no need to select or generate spectrum-compatible time histories to conduct the analysis. Peak response quantities and confidence intervals can be computed without any further simplifications such as currently used in the response spectrum method, where modal combination rules have to be derived. In contrast to many former studies, the Arias intensity-based definition of strong-motion duration is adopted here. This paper shows that, if the same definitions of strong-motion duration and modeling assumptions are used for time history and RVT computations, then the same result can be expected. This is illustrated by application to a simplified model of a reactor building.


2011 ◽  
Vol 27 (3) ◽  
pp. 797-815 ◽  
Author(s):  
Nirmal Jayaram ◽  
Ting Lin ◽  
Jack W. Baker

Dynamic structural analysis often requires the selection of input ground motions with a target mean response spectrum. The variance of the target response spectrum is usually ignored or accounted for in an ad hoc manner, which can bias the structural response estimates. This manuscript proposes a computationally efficient and theoretically consistent algorithm to select ground motions that match the target response spectrum mean and variance. The selection algorithm probabilistically generates multiple response spectra from a target distribution, and then selects recorded ground motions whose response spectra individually match the simulated response spectra. A greedy optimization technique further improves the match between the target and the sample means and variances. The proposed algorithm is used to select ground motions for the analysis of sample structures in order to assess the impact of considering ground-motion variance on the structural response estimates. The implications for code-based design and performance-based earthquake engineering are discussed.


2020 ◽  
pp. 875529302097098
Author(s):  
Luis A Montejo

This article presents a methodology to spectrally match two horizontal ground motion components to an orientation-independent target spectrum (RotDnn). The algorithm is based on the continuous wavelet transform decomposition and iterative manipulation of the two horizontal components of a seed record. The numerical examples presented follow current ASCE/SEI 7 specifications and therefore maximum-direction spectra (RotD100) are used as target for the match. However, the proposed methodology can be used to match other RotDnn spectra, like the median spectrum (RotD50). It is shown that with the proposed methodology the resulting RotDnn from the modified horizontal components closely match the smooth target RotDnn spectrum, while the response spectrum for each horizontal component continue to exhibit a realistic jagged behavior. The response spectra variability at the component level within suites of spectrally matched motions was found to be of the same order than the variability measured in suites composed of amplitude scaled records. Moreover, the spectrally matched records generated preserved most of the characteristics of the seed records, including the nonlinear characteristics of the time history traces and the period-dependent major axis orientations.


Author(s):  
Mateusz Graczyk ◽  
Kjetil Berget ◽  
Joachim Allers

Sloshing, a violent fluid motion in tanks is of current interest for many branches of the industry, among them gas shipping. Although different methods are commonly combined for analyzing sloshing in liquid natural gas (LNG) carriers, time histories of the pressure in the tanks are most reliably obtained by experiments. Very localized pressures may be important for the structural response of the tank containment system. Moreover, the typical pressure time history duration is similar to the structural natural frequency. Therefore, pressure measurements need to be performed with due account for temporal and spatial distribution. This requires a high sampling resolution both in time and space. Fine spatial resolution becomes especially important when local pressure effects are of interest, such as pressure profile passing a membrane corrugation of Mark III containment or Invar edge of No. 96 containment. In this paper experimental approach applied by MARINTEK for analyzing sloshing phenomenon is presented. The focus is put on investigating effects of Invar edges. A transverse 2D model of a typical LNG carrier is used. Local pressure effects are investigated based on low filling level tests with different wall surfaces: smooth and with horizontal protrusions representing the surface similar to the No. 96 containment system.


2016 ◽  
Vol 120 (1228) ◽  
pp. 984-1004 ◽  
Author(s):  
L. Xu ◽  
Y. Wang ◽  
Y. Cai ◽  
Z. Wu ◽  
W. Peng

ABSTRACTComposite materials have been increasingly used in aircraft structures. However, these composite structures are susceptible to damage from external low-velocity impacts. In this paper, an impact identification algorithm is proposed to estimate the impact location and force time history simultaneously. A localisation method based on basis vectors is proposed, and the impact force time history is reconstructed by simplified transfer functions. The basis vector stands for the relationship between the impact location and the sensor signals, and the transfer function shows the relationship of the sensor signal and the force time history. An experiment is conducted on a flat glass fibre-epoxy matrix composite plate to verify the developed algorithm using only four sensors. The soft impactor and hard impactor are two typical impactors for impact events; therefore, the impact experiment is performed by the rubber and the steel impactors, respectively. The experimental results indicate that the proposed algorithm is feasible for the identification of impact events on plate-like composite structures.


Author(s):  
R. E. Spears

A method has been developed which takes a seed earthquake time history and modifies it to produce given design response spectra. It is a multi-step process with an initial scaling step and then multiple refinement steps. It is unique in the fact that both the acceleration and displacement response spectra are considered when performing the fit (which primarily improves the low frequency acceleration response spectrum accuracy). Additionally, no matrix inversion is needed. The features include encouraging the code acceleration, velocity, and displacement ratios and attempting to fit the pseudo velocity response spectrum. Also, “smoothing” is done to transition the modified time history to the seed time history at its start and end. This is done in the time history regions below a cumulative energy of 5% and above a cumulative energy of 95%. Finally, the modified acceleration, velocity, and displacement time histories are adjusted to start and end with an amplitude of zero (using Fourier transform techniques for integration).


Author(s):  
Mateusz Graczyk ◽  
Kjetil Berget ◽  
Joachim Allers

Sloshing, a violent fluid motion in tanks is of current interest for many branches of the industry, among them gas shipping. Although different methods are commonly combined for analyzing sloshing in LNG carriers, time histories of the pressure in the tanks are most reliably obtained by experiments. Very localized pressures may be important for the structural response of the tank containment system. Moreover, the typical pressure time history duration is similar to the structural natural frequency. Therefore, pressure measurements need to be performed with due account for temporal and spatial distribution. This requires a high sampling resolution both in time and space. Fine spatial resolution becomes especially important when local pressure effects are of interest, such as pressure profile passing a membrane corrugation of Mark III containment or Invar edge of No.96 containment. In this paper experimental approach applied by MARIN-TEK for analyzing sloshing phenomenon is presented. The focus is put on investigating effects of Invar edges. A transverse 2D model of a typical LNG carrier is used. Local pressure effects are investigated based on low filling level tests with different wall surfaces: smooth and with horizontal protrusions representing the surface similar to the No.96 containment system.


2015 ◽  
Vol 77 (11) ◽  
Author(s):  
B.M. Hutapea ◽  
M. Asrurifak ◽  
Hendriyawan Hendriyawan ◽  
Masyhur Irsyam

It is not the earthquake but the collapse of the building and infrastructure that will cause the damage and the loss of human lives. To mitigate these hazards, the building and infrastructure need to be designed such that will not collapse due to earthquake. This paper presents the procedure for generating time histories at ground surface for Jakarta area. Required data to generate these modified time histories were extracted from the Team for Revision of Seismic Hazard Maps of Indonesia 2010. The results are used as input motions in dynamic time history analysis for predicting earthquake design loads for infrastructures, such as bridges such that those structures can be designed to bear the impact of an earthquake and prevent collapse


Author(s):  
Duc-Kien Thai ◽  
Seung-Eock Kim

In this paper, the force-time histories of soft missiles, with and without filled water, impacting the target wall were investigated using finite element analysis. The force plate tests, with a dry missile (test FP8) and a wet missile (test FP16) carried out by Technical Research Centre of Finland (VTT), were used. The numerical analysis results were verified by comparing with those of experiments. A parametric analysis with different missile velocities was also performed to investigate the force-time history and impulse of the missile impact on target plate. Based on a comparison with the Riera approach, the coefficients were proposed to modify the Riera function. The analysis results show that, the Riera function accurately predicted the impact force time history in the case of the dry missile. However, in the case of the wet missile, the coefficients α from 1.24 to 1.45 are recommended to be added to the second term of the Riera function in the case in which the impact velocity is in the range of 70 m/s to 200 m/s.


2013 ◽  
Vol 20 (3) ◽  
pp. 561-573 ◽  
Author(s):  
Chunlin Chen ◽  
Yulong Li ◽  
Fuh-Gwo Yuan

This paper presents a detailed study on the impact source identification of a plate structure using time-reversal (T-R) method. Prior to impact monitoring, the plate is calibrated (or characterized) by transfer functions at discrete locations on the plate surface. Both impact location and impact loading time-history are identified using T-R technique and associated signal processing algorithms. Numerical verification for finite-size isotropic plates under low velocity impacts is performed to demonstrate the versatility of T-R method for impact source identification. The tradeoff between accuracy of the impact location detection and calibration spacing is studied in detail. In particular, the effect of plate thickness on calibration spacing has been examined. A number of parameters selected for determining the impact location, approximated transfer functions and steps taken for reconstructing the impact loading time-history are also examined. Two types of noise with various intensities contaminated in strain response and/or transfer functions are investigated for demonstrating the stability and reliability of the T-R method. The results show that T-R method is robust against noise in impact location detection and force reconstruction in circumventing the inherent ill-conditioned inverse problem. Only transfer functions are needed to be calibrated and four sensors are requested in T-R method for impact identification.


Sign in / Sign up

Export Citation Format

Share Document