Northridge Welded Steel Moment-Frame Damage Data and Its Use for Rapid Loss Estimation

2003 ◽  
Vol 19 (2) ◽  
pp. 335-364 ◽  
Author(s):  
David Bonowitz ◽  
Bruce F. Maison

FEMA-351, Recommended Seismic Evaluation and Upgrade Criteria for Existing Welded Steel Moment-Frame Buildings, offers two methods for estimating seismic losses in pre-Northridge WSMFs: detailed and rapid. The rapid method uses empirical relationships between seismic demand parameters and either damage levels or repair costs. The relationships are based on actual damage data collected after the 1994 Northridge earthquake. This paper summarizes the Northridge data, explains the FEMA-351 rapid method loss functions, and comments on the nature of the damage data and its application to loss estimation. Use of the loss functions can be enhanced by understanding their inherent assumptions and uncertainties and by considering how the underlying data was collected and interpreted in the years following the 1994 earthquake.

2003 ◽  
Vol 19 (2) ◽  
pp. 365-384 ◽  
Author(s):  
Charles A. Kircher

This paper describes procedures that may be used by experienced structural engineers to develop earthquake damage and related loss functions for welded steel moment-frame (WSMF) buildings. The damage and loss functions are based on and compatible with the loss estimation methods of HAZUS, a technology developed by Federal Emergency Management Agency (FEMA) for assessing regional impacts of earthquakes. The loss estimation procedures were developed by the SAC Steel Program as described in SAC Joint Venture Topical Report SAC/BD-99/13. These procedures form the basis for Appendix B of FEMA-351, Recommended Seismic Evaluation and Upgrade Criteria for Existing Welded Steel Moment-Frame Buildings. The procedures for developing damage and loss functions for WSMF building response are general in nature and applicable to WSMF buildings designed to different seismic criteria and having different connection details. Default values of damage and loss function parameters are provided for typical 3-story, 9-story, and 20-story WSMF buildings, designed for Los Angeles, Seattle, or Boston seismic criteria and having pre-Northridge, post-Northridge, or damaged pre-Northridge connection conditions.


2003 ◽  
Vol 19 (2) ◽  
pp. 317-334 ◽  
Author(s):  
John D. Hooper

In July 2000, the SAC Joint Venture (a joint venture of the Structural Engineers Association of California, the Applied Technology Council, and California Universities for Research in Earthquake Engineering) prepared a series of recommendations regarding welded steel moment-frame design, evaluation, and upgrade procedures. FEMA-351, Recommended Seismic Evaluation and Upgrade Criteria for Existing Welded Steel Moment-Frame Buildings, was developed to evaluate the probable performance of existing steel moment-frame buildings in future earthquakes and to provide guidance or upgrading these buildings. The procedures introduced in FEMA-351 allow the determination of the level of confidence a structure will be able to achieve based on a specified performance objective, using simplified analytical methods. Simplified procedures for estimating the probable post-earthquake repair costs and nonstructural damage, based on the losses incurred in the 1994 Northridge earthquake, are presented as well. This paper provides a brief chapter-by-chapter overview of the information contained in FEMA-351 and emphasizes the performance evaluation procedures by stepping through the process using an example building.


2010 ◽  
Vol 452-453 ◽  
pp. 469-472
Author(s):  
Hong Bo Liu ◽  
Long Jun Xu ◽  
Shuang Li ◽  
Yong Song Shao

Following the 1994 Northridge earthquake, widespread damages were discovered in welded steel moment frame buildings. In order to accurately simulate the typical seismic damage of welded steel moment frame structures, a new simplified model is proposed for performing seismic evaluation of welded steel moment frame structures. In this model, the slabs effect is considered, as well as the effects of the slip between slabs and steel beams, deformation of panel zone and connection fractures. Fracture toughness demands were evaluated in terms of the mode I stress intensity factor. The model was employed in simulation of seismic damage of Blue Cross Building which experienced fractured connections in the Northridge earthquake. It indicates that the model can accurately predict the earthquake response of welded steel moment frame structures and estimate the level of damage. The approach proposed in this paper has important meaning to the research on seismic damage of steel frame which may experience fractured connections.


2009 ◽  
Vol 25 (4) ◽  
pp. 927-953 ◽  
Author(s):  
Bruce F. Maison ◽  
Kazuhiko Kasai ◽  
Gregory Deierlein

A welded steel moment-frame building is used to assess performance-based engineering guidelines. The full-scale four-story building was shaken to collapse on the E-Defense shake table in Japan. The collapse mode was a side-sway mechanism in the first story, which occurred in spite of a strong-column and weak-beam design. Computer analyses were conducted to simulate the building response during the experiment. The building was then evaluated using the Seismic Rehabilitation of Existing Buildings (ASCE-41) and Seismic Evaluation and Upgrade Criteria for Existing Welded Steel Moment-Frame Buildings (FEMA-351) for the collapse prevention performance level via linear and nonlinear procedures. The guidelines had mixed results regarding the characterization of collapse, and no single approach was superior. They mostly erred on the safe side by predicting collapse at shaking intensities less than that in the experiment. Recommendations are made for guideline improvements.


2004 ◽  
Vol 20 (3) ◽  
pp. 951-973 ◽  
Author(s):  
Bruce F. Maison ◽  
Tom H. Hale

The two-story welded steel moment-frame (WSMF) essential services building had columns severed by the 1994 Northridge earthquake. Two of eight columns suffered fracture across both flanges and panel zones in the WSMFs oriented in the north-south direction. Building and connection damage are described; computer models of the building are formulated and used in a damage correlation exercise that aids in damage interpretation; and a calibrated model is used as the basis of special studies. Factors contributing to the severed columns appear to be column-steel low-fracture toughness, panel zone detailing, and panel-zone shear yielding. Using FEMA-351 guidelines, the as-built as well as the Northridge-damaged structure pass the global collapse prevention drift criterion and fail the local collapse prevention drift criterion. The results provide insight regarding the seismic safety of buildings having similar conditions.


2000 ◽  
Vol 16 (1) ◽  
pp. 179-203
Author(s):  
James O. Malley ◽  
Charles J. Carter ◽  
C. Mark Saunders

One of the important surprises of the Northridge earthquake of January 17, 1994, was the widespread and unanticipated brittle fracture of welded steel beam-to-column connections. Although no casualties or collapses occurred during the Northridge earthquake as a result of these connection failures, and many WSMF buildings were not damaged at all, a wide spectrum of brittle connection damage did occur, ranging from minor cracking to completely severed columns. This paper summarizes two of the most important documents that have been developed in response to the damage suffered to steel moment frame buildings in the Northridge earthquake. The first, FEMA 267, Interim Guidelines: Evaluation, Repair, Modification and Design of Welded Steel Moment Frame Structures, was generated from studies undertaken as part of a project initiated by the U.S. Federal Emergency Management Agency (FEMA) to reduce the earthquake hazards posed by steel moment-resisting frame buildings. The second document addressed in this paper is the 1997 edition of the American Institute of Steel Construction (AISC) Seismic Provisions for Structural Steel Buildings (commonly referred to as the AISC Seismic Provisions) that incorporates the new information generated by the FEMA-sponsored project and other investigations on the seismic performance of steel structures, and has been adopted by reference into the 2000 International Building Code (IBC).


2006 ◽  
Vol 22 (4) ◽  
pp. 1081-1101 ◽  
Author(s):  
Bruce F. Maison ◽  
Kazuhiko Kasai ◽  
Yoji Ooki

Seismic behaviors of a five-story welded steel moment-frame (WSMF) office building in Kobe, Japan, and a six-story WSMF office building in Northridge, California, are compared. Both experienced earthquake damage (1995 Kobe and 1994 Northridge earthquakes, respectively). Computer models of the buildings are formulated, having the ability to simulate damage in terms of fractured moment connections. Analyses are conducted to assess building response during the earthquakes. The calibrated models are then analyzed using a suite of earthquake records to compare building performance under consistent demands. The Kobe building is found to be more rugged than the Northridge building. Analysis suggests it would experience much less damage than the Northridge building from shaking equivalent to 2,500-year earthquake for a generic Los Angeles site. Superior performance of the Kobe building is attributed to its relatively greater stiffness and strength. The results provide insight into the difference in seismic fragility expected for this class of mid-rise WSMF buildings in Japan and the United States.


2003 ◽  
Vol 19 (2) ◽  
pp. 269-290
Author(s):  
C. Mark Saunders

The damage to steel moment frames observed in the Northridge earthquake of 1994 led to requirements in codes for use of tested connections, when these systems were to be employed in new buildings. One of the primary goals of the FEMA/SAC project was to develop guidelines for the design of steel moment frames that would return the design process to a relatively simple set of procedures similar to those used in the design of other lateral force-resisting systems. Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings, FEMA-350, presents design guidelines for use of steel moment frames in new buildings, developed from the FEMA/SAC research. This paper provides a general summary of the criteria, and a description of the prequalified connections and recommendations for their use.


2001 ◽  
Vol 17 (2) ◽  
pp. 291-312 ◽  
Author(s):  
Keith A. Porter ◽  
Anne S. Kiremidjian ◽  
Jeremiah S. LeGrue

Assembly-based vulnerability (ABV) is a framework for evaluating the seismic vulnerability and performance of buildings on a building-specific basis. It utilizes the damage to individual building components and accounts for the building's seismic setting, structural and nonstructural design and use. A simulation approach to implementing ABV first applies a ground motion time history to a structural model to determine structural response. The response is applied to assembly fragility functions to simulate damage to each structural and nonstructural element in the building, and to its contents. Probabilistic construction cost estimation and scheduling are used to estimate repair cost and loss-of-use duration as random variables. It also provides a framework for accumulating post-earthquake damage observations in a statistically systematic and consistent manner. The framework and simulation approach are novel in that they are fully probabilistic, address damage at a highly detailed and building-specific level, and do not rely extensively on expert opinion. ABV is illustrated using an example pre-Northridge welded-steel-moment-frame office building.


2021 ◽  
Vol 11 (1) ◽  
pp. 6674-6679
Author(s):  
H. Ullah ◽  
M. Rizwan ◽  
M. Fahad ◽  
S. A. A. Shah

This paper presents the findings of an experimental investigation on a reinforced concrete frame structure (ordinary moment resistant frame). The test model was subjected to lateral excitation employing the 1994 Northridge earthquake accelerogram. The reinforced concrete test model was fabricated in 1:3 reduced scale acquiring dimensional similarities. The utilized ingredient mix ratio was 1:1.65:1.75 and the water to binder ratio was 0.47. The dynamic characteristics (natural frequency and elastic viscous damping) were calculated using the free vibration record. Story shear, drift, and displacement profiles were drawn using multiple excitation records along with damage patterns and capacity curves. The natural frequency of 2.47Hz was calculated for the test specimen, which is equivalent to 1.41Hz for the prototype. Structural damping (elastic viscous) of 12.36% was calculated for the prototype.


Sign in / Sign up

Export Citation Format

Share Document