scholarly journals Seismic Evaluation of the RC Moment Frame Structure using the Shake Table

2021 ◽  
Vol 11 (1) ◽  
pp. 6674-6679
Author(s):  
H. Ullah ◽  
M. Rizwan ◽  
M. Fahad ◽  
S. A. A. Shah

This paper presents the findings of an experimental investigation on a reinforced concrete frame structure (ordinary moment resistant frame). The test model was subjected to lateral excitation employing the 1994 Northridge earthquake accelerogram. The reinforced concrete test model was fabricated in 1:3 reduced scale acquiring dimensional similarities. The utilized ingredient mix ratio was 1:1.65:1.75 and the water to binder ratio was 0.47. The dynamic characteristics (natural frequency and elastic viscous damping) were calculated using the free vibration record. Story shear, drift, and displacement profiles were drawn using multiple excitation records along with damage patterns and capacity curves. The natural frequency of 2.47Hz was calculated for the test specimen, which is equivalent to 1.41Hz for the prototype. Structural damping (elastic viscous) of 12.36% was calculated for the prototype.

2015 ◽  
Vol 11 (3) ◽  
pp. 38-45
Author(s):  
Ioana Olteanu ◽  
Radu Marian Canarache ◽  
Mihai Budescu

Abstract Seismic vulnerability for a structure represents the susceptibility to be affected by an event with a given intensity. The vulnerability of a structure can be influenced by the design methods or by different problems that may appear during the execution process. This paper shows a case study for the vulnerability increase of a reinforced concrete frame structure in 2 different situations: a) modification produced due to code changes, meaning P100-2006 respectively P100-2013; b) modifications produced the structure taking into account the errors which have occurred during the execution process; For both cases, capacity curves were plotted considering the nonlinear analysis, also called pushover. The numerical simulation was performed in SAP2000 software. These curves were compared with the response spectrum corresponding to the site conditions in order to obtain the performance point. For accurate results, fragility curves were plotted for both considered situations, according to previous research of the authors. The paper emphasizes the importance of each stage during the execution of a structure. More over the differences in the vulnerability index show the importance on the overall behavior of the structure. Solution to increase strength and safety for the structure are also given at the end of the paper


2014 ◽  
Vol 556-562 ◽  
pp. 712-715
Author(s):  
Jing Zhao ◽  
Jing Zhao ◽  
Xing Wang Liu

In collapse-resistant design of a structure under accidental local action, it is important to understand the failure mechanism and alternative load paths. In this paper, a pseudo-static experimental method is proposed. Based on which, the collapse of frame structure was simulated with testing a 1/3 scale; 4-bay and 3-story plane reinforced concrete frame. In the experience, the middle column of the bottom floor was replaced by mechanical jacks to simulate its failure, and the simulated superstructure’s gravity load acted on the column of the top floor by adopting a servo-hydraulic actuator with force –controlled mode.


2011 ◽  
Vol 255-260 ◽  
pp. 2421-2425
Author(s):  
Qiu Wei Wang ◽  
Qing Xuan Shi ◽  
Liu Jiu Tang

The randomness and uncertainty of seismic demand and structural capacity are considered in demand-capacity factor method (DCFM) which could give confidence level of different performance objectives. Evaluation steps of investigating seismic performance of steel reinforced concrete structures with DCFM are put forward, and factors in calculation formula are modified based on stress characteristics of SRC structures. A regular steel reinforced concrete frame structure is analyzed and the reliability level satisfying four seismic fortification targets are calculated. The evaluation results of static and dynamic nonlinear analysis are compared which indicates that the SRC frame has better seismic performance and incremental dynamic analysis could reflect more dynamic characteristics of structures than pushover method.


2012 ◽  
Vol 204-208 ◽  
pp. 869-871
Author(s):  
Cai Hua Wang ◽  
Hui Jian Li ◽  
Jian Feng Wu

The multi-storey reinforced concrete frame structure used lead rubber pad as the base isolation device. The paper had modal analysis of base-isolated multi-storey reinforced concrete frame structure using the ANSYS software. Comparing the frequency and vibration mode before and after isolation under El-Centro wave, It concluded the leader rubber pad have seismic isolation effect for multi-storey reinforced concrete frame structure .


1999 ◽  
Vol 26 (5) ◽  
pp. 606-617 ◽  
Author(s):  
A C Heidebrecht ◽  
N Naumoski

This paper describes an investigation into the seismic performance of a six-storey ductile moment-resisting frame structure located in Vancouver and designed and detailed in accordance with the seismic provisions of the National Building Code of Canada (1995). Both pushover and dynamic analyses are conducted using an inelastic model of the structure as designed and detailed. The structural performance of a number of design variations is evaluated using interstorey drift and member curvature ductility response as performance measures. All frames studied are expected to perform at an operational level when subjected to design level seismic excitations and to meet life safe performance criteria at excitations of twice the design level.Key words: seismic, building, frames, ductile, design, performance, reinforced concrete, code.


Sign in / Sign up

Export Citation Format

Share Document