The Morgan Hill Earthquake of April 24, 1984—The 1.29g Acceleration at Coyote Lake Dam: Due to Directivity, a Double Event, or Both?

1985 ◽  
Vol 1 (3) ◽  
pp. 445-455 ◽  
Author(s):  
Norman A. Abrahamson ◽  
Robert B. Darragh

The 1984 Halls Valley (Morgan Hill, California) earthquake had a complex seismic source. Velocities of the major seismic phases measured from continuous broadband seismograms at Berkeley Seismographic Station (BKS) and Richmond Field Station (RFS) show unambiguously that the earthquake is predominantly a double event with the second source hypocenter located approximately 17 km southeast of the mainshock hypocenter given by Bolt, Uhrhammer and Darragh (1985). The southeasterly fault rupture of the first source and the location of the focus of the second source have critical implications for the observed spatial variation of the recorded accelerograms. Of particular engineering interest, the high frequency 1.29g pulse of horizontal ground acceleration measured at Coyote Lake dam can be explained primarily as due to the second source and constructive interference of the principal S waves from the two sources.

1981 ◽  
Vol 71 (1) ◽  
pp. 295-319
Author(s):  
A. McGarr ◽  
R. W. E. Green ◽  
S. M. Spottiswoode

abstract Ground acceleration was recorded at a depth of about 3 km in the East Rand Proprietary Mines, South Africa, for tremors with −1 ≦ ML ≦ 2.6 in the hypocentral distance range 50 m < R ≦ 1.6 km. The accelerograms typically had predominant frequencies of several hundred Hertz and peak accelerations, a, as high as 12 g. The peak accelerations show a dependence on magnitude, especially when expressed as dynamic shear-stress differences, defined as σ˜ = ρRa, where ρ is density. For the mine tremors, σ˜ varies from 2 to 500 bars and depends on magnitude according to log σ˜ = 1.40 + 0.38 · ML. Accelerograms for 12 events were digitized and then processed to determine velocity and, for seven events with especially good S/N, displacement and seismic source parameters. Peak ground velocities v ranged up to 6 cm/sec and show a well-defined dependence one earthquake size as measured by ML or by seismic moment, Mo. On the basis of regression fits to the mine data, with −0.76 ≦ ML ≦ 1.45, log Rv = 3.95 + 0.57 ML, where Rv is in cm2/sec, and log Rv = −4.68 + 0.49 log Mo. These regression lines agree excellently with the corresponding data for earthquakes of ML up to 6.4 or Mo to 1.4 × 1026 dyne-cm. At a given value of ML or Mo, a, at fixed R, shows considerably greater variation than v and appears to depend on the bandwidth of the recording system. The peak acceleration at small hypocentral distances is broadly consistent with ρRa = 1.14 Δτrofs/β, where Δτ is stress drop, ro is the source radius, β is shear velocity, and fs is the bandwidth of the recording system. The peak velocity data agree well with Rv = 0.57 βΔτro/μ, where μ is the modulus of rigidity; both expressions follow from Brune's model of the seismic source and were compared with data for events in the size range 5 × 1016 ≦ Mo ≦ 1.4 × 1026 dyne-cm. Measurements of the source parameters indicated that, as for earthquakes, the stress drops for the tremors range from 1 to 100 bars and show no consistent dependence on Mo down to Mo = 5 × 1016 dyne-cm.


1982 ◽  
Vol 72 (6A) ◽  
pp. 1957-1968
Author(s):  
Mansour Niazi

abstract Two sets of observations obtained during the 15 October 1979 Imperial Valley earthquake, MS 6.9, are presented. The data suggest different dynamic characteristics of the source when viewed in different frequency bands. The first data set consists of the observed residuals of the horizontal peak ground accelerations and particle velocity from predicted values within 50 km of the fault surface. The residuals are calculated from a nonlinear regression analysis of the data (Campbell, 1981) to the following empirical relationships, PGA = A 1 ( R + C 1 ) − d 1 , PGV = A 2 ( R + C 2 ) − d 2 in which R is the closest distance to the plane of rupture. The so-calculated residuals are correlated with a positive scalar factor signifying the focusing potential at each observation point. The focusing potential is determined on the basis of the geometrical relation of the station relative to the rupture front on the fault plane. The second data set consists of the acceleration directions derived from the windowed-time histories of the horizontal ground acceleration across the El Centro Differential Array (ECDA). The horizontal peak velocity residuals and the low-pass particle acceleration directions across ECDA require the fault rupture to propagate northwestward. The horizontal peak ground acceleration residuals and the high-frequency particle acceleration directions, however, are either inconclusive or suggest an opposite direction for rupture propagation. The inconsistency can best be explained to have resulted from the incoherence of the high-frequency radiation which contributes most effectively to the registration of PGA. A test for the sensitivity of the correlation procedure to the souce location is conducted by ascribing the observed strong ground shaking to a single asperity located 12 km northwest of the hypocenter. The resulting inconsistency between the peak acceleration and velocity observations in relation to the focusing potential is accentuated. The particle velocity of Delta Station, Mexico, in either case appears abnormally high and disagrees with other observations near the southeastern end of the fault trace. From the observation of a nearly continuous counterclockwise rotation of the plane of P-wave particle motion at ECDA, the average rupture velocity during the first several seconds of source activation is estimated to be 2.0 to 3.0 km/sec. A 3 km upper bound estimate of barrier dimensions is tentatively made on the basis of the observed quasiperiodic variation of the polarization angles.


1999 ◽  
Vol 42 (6) ◽  
Author(s):  
B. Tavakoli ◽  
M. Ghafory-Ashtiany

The development of the new seismic hazard map of Iran is based on probabilistic seismic hazard computation using the historical earthquakes data, geology, tectonics, fault activity and seismic source models in Iran. These maps have been prepared to indicate the earthquake hazard of Iran in the form of iso-acceleration contour lines, and seismic hazard zoning, by using current probabilistic procedures. They display the probabilistic estimates of Peak Ground Acceleration (PGA) for the return periods of 75 and 475 years. The maps have been divided into intervals of 0.25 degrees in both latitudinal and longitudinal directions to calculate the peak ground acceleration values at each grid point and draw the seismic hazard curves. The results presented in this study will provide the basis for the preparation of seismic risk maps, the estimation of earthquake insurance premiums, and the preliminary site evaluation of critical facilities.


An effective earthquake (Mw 7.9) struck Alaska on 3 November, 2002. This earthquake ruptured 340 km along Susitna Glacier, Denali and Totschunda faults in central Alaska. The peak ground acceleration (PGA) was recorded about 0.32 g at station PS10, which was located 3 km from the fault rupture. The PGA would have recorded a high value, if more instruments had been installed in the region. A numerical study has been conducted to find out the possible ground motion record that could occur at maximum horizontal slip during the Denali earthquake. The current study overcomes the limitation of number of elements to model the Denali fault. These numerical results are compared with observed ground motions. It is observed that the ground motions obtained through numerical analysis are in good agreement with observed ground motions. From numerical results, it is observed that the possible expected PGA is 0.62 g at maximum horizontal slip of Denali fault.


2010 ◽  
Vol 168 (5) ◽  
pp. 797-813 ◽  
Author(s):  
Sumer Chopra ◽  
Dinesh Kumar ◽  
B. K. Rastogi
Keyword(s):  

2000 ◽  
Vol 143 (2) ◽  
pp. 365-375 ◽  
Author(s):  
U. Dutta ◽  
N. Biswas ◽  
A. Martirosyan ◽  
S. Nath ◽  
M. Dravinski ◽  
...  

Geophysics ◽  
2004 ◽  
Vol 69 (1) ◽  
pp. 16-24 ◽  
Author(s):  
Thomas M. Daley ◽  
Ernest L. Majer ◽  
John E. Peterson

Multiple seismic crosswell surveys have been acquired and analyzed in a fractured basalt aquifer at Idaho National Engineering and Environmental Laboratory. Most of these surveys used a high‐frequency (1000–10,000 Hz) piezoelectric seismic source to obtain P‐wave velocity tomograms. The P‐wave velocities range from less than 3200 m/s to more than 5000 m/s. Additionally, a new type of borehole seismic source was deployed as part of the subsurface characterization program at this contaminated groundwater site. This source, known as an orbital vibrator, allows simultaneous acquisition of P‐ and S‐waves at frequencies of 100 to 400 Hz, and acquisition over larger distances. The velocity tomograms show a relationship to contaminant transport in the groundwater; zones of high contaminant concentration are coincident with zones of low velocity and high attenuation and are interpreted to be fracture zones at the boundaries between basalt flows. The orbital vibrator data show high Vp/Vs values, from 1.8 to 2.8. In spite of the lower resolution of orbital vibrator data, these data were sufficient for constraining hydrologic models at this site while achieving imaging over large interwell distances. The combination of piezoelectric data for closer well spacing and orbital vibrator data for larger well spacings has provided optimal imaging capability and has been instrumental in our understanding of the site aquifer's hydrologic properties and its scale of heterogeneity.


1998 ◽  
Vol 153 (2-4) ◽  
pp. 489-502 ◽  
Author(s):  
K. Yoshimoto ◽  
H. Sato ◽  
Y. Iio ◽  
H. Ito ◽  
T. Ohminato ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document