Ground Motion Model for Puget Sound Cohesionless Soil Sites

1991 ◽  
Vol 7 (2) ◽  
pp. 237-266
Author(s):  
Carlton L. Ho ◽  
Karen Kornher ◽  
George Tsiatas

Surface response spectra for earthquake events must be based upon proper input seismic modelling. The surface response spectrum can be determined by convoluting a base response spectrum with a spectral amplification for the site. This required that an appropriate base spectrum of the earthquake motion and soil response model must have been used to develop the surface response spectra. Earthquakes in the Puget Sound basin are generally deep focus subduction zone events. These earthquakes are significantly different than the shallow focus strike slip events of California which are commonly used for this purpose. The spectral site amplification must be determined for the soils of the region. This paper considers the cohesionless soil sites only. The computer program SHAKE was used to evaluate the spectral amplification of different sites. Parameters for SHAKE were determined from Standard Penetration Test data. Parametric sensitivity studies were conducted for the spectral site amplification.

2015 ◽  
Vol 31 (2) ◽  
pp. 745-759 ◽  
Author(s):  
Brendon A. Bradley

Response spectrum damping modification factors are key components of displacement-based seismic design methods. This paper examines the period dependence of damping modification factors as a result of near-source forward directivity, basin-induced surface waves, and surficial soil response by using recorded ground motions from the Canterbury, New Zealand, earthquakes as examples. It is illustrated that spectral peaks in the 5% damped response spectra have systematically different damping modification factors than those suggested by conventional empirical formulas; this is also supported by arguments based on forced vibration theory. Because source- and site-specific effects are increasingly being considered in the development of region- or site-specific design response spectra, this work illustrates the critical need to adequately consider adjustments to damping modification factors to ensure that displacement-based seismic design procedures remain consistent.


2008 ◽  
Vol 24 (1) ◽  
pp. 243-255 ◽  
Author(s):  
Melanie Walling ◽  
Walter Silva ◽  
Norman Abrahamson

Amplification factors computed from the equivalent-linear method using the program RASCALS are used to develop constraints on the nonlinear soil response for possible use by the NGA ground-motion model developers. The site response computations covered site conditions with average VS30 values ranging from 160 to 900 m/s, soil depths from 15 to 914 m, and peak accelerations of the input rock motion ( VS30=1100 m/s) between 0.01 g and 1.5 g. Four sets of nonlinear properties of the soils are used: EPRI, Peninsular Range, Imperial Valley, and Bay Mud. The first two soil models are used for VS30≥270 m/s and the later two are used for VS30≤190 m/s. Simple parametric models of the nonlinear amplification factors that are functions of the PGA on rock and VS30 are developed for the EPRI and Peninsula models.


1993 ◽  
Vol 30 (1) ◽  
pp. 1-11
Author(s):  
R. Frank ◽  
H. Zervogiannis ◽  
S. Christoulas ◽  
V. Papadopoulos ◽  
N. Kalteziotis

This paper describes the behaviour of two test piles (one bored and postgrouted and one simply bored, both 31.7 m long and 0.75 m in diameter) subjected to horizontal loads. These full-scale pile tests were carried out for the actual design of the pile foundation of a pier of the Evripos cable-stayed bridge. This bridge will link the Euboea Island to mainland Greece. The two piles have already been subjected to bearing capacity tests under axial loadings. The inclinometer measurements, taken during the present tests, yielded, in particular, the deformed shape of the piles as well as the bending moments. Conclusions could be drawn for the final design of the pile foundation with respect to horizontal loadings. Furthermore, various calculation methods using p–y reaction curves for cohesionless soils have been checked: the Ménard pressuremeter method, the method of the American Petroleum Institute recommendations, and the Standard penetration test method of Christoulas. These pile tests show that simple measurements, taken on construction sites, can yield interesting results on the actual behaviour of horizontally loaded piles. Key words : pile, horizontal loading, full-scale test, horizontal loads, bending moment, subgrade reaction modulus, p–y curve, cohesionless soil, Standard penetration test, pressuremeter test.


2008 ◽  
Vol 24 (1) ◽  
pp. 173-215 ◽  
Author(s):  
BrianS-J. Chiou ◽  
Robert R. Youngs

We present a model for estimating horizontal ground motion amplitudes caused by shallow crustal earthquakes occurring in active tectonic environments. The model provides predictive relationships for the orientation-independent average horizontal component of ground motions. Relationships are provided for peak acceleration, peak velocity, and 5-percent damped pseudo-spectral acceleration for spectral periods of 0.01 to 10 seconds. The model represents an update of the relationships developed by Sadigh et. al. (1997) and incorporates improved magnitude and distance scaling forms as well as hanging-wall effects. Site effects are represented by smooth functions of average shear wave velocity of the upper 30 m ( VS30) and sediment depth. The new model predicts median ground motion that is similar to Sadigh et. al. (1997) at short spectral period, but lower ground motions at longer periods. The new model produces slightly lower ground motions in the distance range of 10 to 50 km and larger ground motions at larger distances. The aleatory variability in ground motion amplitude was found to depend upon earthquake magnitude and on the degree of nonlinear soil response, For large magnitude earthquakes, the aleatory variability is larger than found by Sadigh et. al. (1997).


2018 ◽  
Vol 10 (12) ◽  
pp. 4659 ◽  
Author(s):  
Yabin Chen ◽  
Longjun Xu ◽  
Xingji Zhu ◽  
Hao Liu

For seismic resilience-based design (RBD), a selection of recorded time histories for dynamic structural analysis is usually required. In order to make individual structures and communities regain their target functions as promptly as possible, uncertainty of the structural response estimates is in great need of reduction. The ground motion (GM) selection based on a single target response spectrum, such as acceleration or displacement response spectrum, would bias structural response estimates leading significant uncertainty, even though response spectrum variance is taken into account. In addition, resilience of an individual structure is not governed by its own performance, but depends severely on the performance of other systems in the same community. Thus, evaluation of resilience of a community using records matching target spectrum at whole periods would be reasonable because the fundamental periods of systems in the community may be varied. This paper presents a GM selection approach based on a probabilistic framework to find an optimal set of records to match multiple target spectra, including acceleration and displacement response spectra. Two major steps are included in that framework. Generation of multiple sub-spectra from target displacement response spectrum for selecting sets of GMs was proposed as the first step. Likewise, the process as genetic algorithm (GA), evolvement of individuals previously generated, is the second step, rather than using crossover and mutation techniques. A novel technique improving the match between acceleration response spectra of samples and targets is proposed as the second evolvement step. It is proved computationally efficient for the proposed algorithm by comparing with two developed GM selection algorithms. Finally, the proposed algorithm is applied to select GM records according to seismic codes for analysis of four archetype reinforced concrete (RC) frames aiming to evaluate the influence of GM selection considering two design response spectra on structural responses. The implications of design response spectra especially the displacement response spectrum and GM selection algorithm are summarized.


2012 ◽  
Vol 55 (4) ◽  
Author(s):  
Francesca Bozzoni ◽  
Carlo Giovanni Lai ◽  
Laura Scandella

The preliminary results are presented herein for the engineering applications of the characteristics of the ground motion induced by the May 20, 2012, Emilia earthquake. Shake maps are computed to provide estimates of the spatial distribution of the induced ground motion. The signals recorded at the Mirandola (MRN) station, the closest to the epicenter, have been processed to obtain acceleration, velocity and displacement response spectra. Ground-motion parameters from the MRN recordings are compared with the corresponding estimates from recent ground-motion prediction equations, and with the spectra prescribed by the current Italian Building Code for different return periods. The records from the MRN station are used to plot the particle orbit (hodogram) described by the waveform. The availability of results from geotechnical field tests that were performed at a few sites in the Municipality of Mirandola prior to this earthquake of May 2012 has allowed preliminary assessment of the ground response. The amplification effects at Mirandola are estimated using fully stochastic site-response analyses. The seismic input comprises seven actual records that are compatible with the Italian code-based spectrum that refers to a 475-year return period. The computed acceleration response spectrum and the associated dispersion are compared to the spectra calculated from the recordings of the MRN station. Good agreement is obtained for periods up to 1 s, especially for the peak ground acceleration. For the other periods, the spectral acceleration of the MRN recordings exceeds that of the computed spectra.<br />


2020 ◽  
pp. 875529302097098
Author(s):  
Luis A Montejo

This article presents a methodology to spectrally match two horizontal ground motion components to an orientation-independent target spectrum (RotDnn). The algorithm is based on the continuous wavelet transform decomposition and iterative manipulation of the two horizontal components of a seed record. The numerical examples presented follow current ASCE/SEI 7 specifications and therefore maximum-direction spectra (RotD100) are used as target for the match. However, the proposed methodology can be used to match other RotDnn spectra, like the median spectrum (RotD50). It is shown that with the proposed methodology the resulting RotDnn from the modified horizontal components closely match the smooth target RotDnn spectrum, while the response spectrum for each horizontal component continue to exhibit a realistic jagged behavior. The response spectra variability at the component level within suites of spectrally matched motions was found to be of the same order than the variability measured in suites composed of amplitude scaled records. Moreover, the spectrally matched records generated preserved most of the characteristics of the seed records, including the nonlinear characteristics of the time history traces and the period-dependent major axis orientations.


Sign in / Sign up

Export Citation Format

Share Document