Performance of Port Facilities in Southern Chile during the 27 February 2010 Maule Earthquake

2012 ◽  
Vol 28 (1_suppl1) ◽  
pp. 553-579 ◽  
Author(s):  
Santiago Brunet ◽  
Juan Carlos de la Llera ◽  
Andrés Jacobsen ◽  
Eduardo Miranda ◽  
Cristián Meza

This article describes the seismic performance of a group of ports in southern Chile during the 27 February 2010 Maule, Chile, earthquake. Direct costs in damage for these ports have been estimated in slightly less than US$300 million. Similarly to the performance of other ports in previous earthquakes, the most common failures observed were soil related, and include soil liquefaction, lateral spreading, and pile failures. Structural failures were mostly due to short pile effects and natural torsion. This situation is contrasted herein with the performance of the South Coronel Pier, which was seismically isolated in 2007. The isolated portion of this port remained operational after the earthquake, which was the main design goal. Post-earthquake preliminary analyses indicate that the structure was subjected to deformations and forces of approximately 60% to 70% of their design values, respectively. Piles and superstructure remained within elastic range, while the isolators experienced important nonlinear deformations.

2012 ◽  
Vol 28 (1_suppl1) ◽  
pp. 97-118 ◽  
Author(s):  
Jonathan Bray ◽  
Kyle Rollins ◽  
Tara Hutchinson ◽  
Ramon Verdugo ◽  
Christian Ledezma ◽  
...  

Soil liquefaction occurred at many sites during the 2010 Maule, Chile, earthquake, often leading to ground failure and lateral spreading. Of particular interest are the effects of liquefaction on built infrastructure. Several buildings were damaged significantly due to foundation movements resulting from liquefaction. Liquefaction-induced ground failure also displaced and distorted waterfront structures, which adversely impacted the operation of some of Chile's key port facilities. Important case histories that document the effects of ground failure on buildings, ports, and industrial facilities are presented in this paper.


2012 ◽  
Vol 28 (1_suppl1) ◽  
pp. 119-143 ◽  
Author(s):  
Christian Ledezma ◽  
Tara Hutchinson ◽  
Scott A. Ashford ◽  
Robb Moss ◽  
Pedro Arduino ◽  
...  

The long duration and strong velocity content of the motions produced by the 27 February 2010 Maule earthquake resulted in widespread liquefaction and lateral spreading in several urban and other regions of Chile. In particular, critical lifeline structures such as bridges, roadway embankments, and railroads were damaged by ground shaking and ground failure. This paper describes the effects that ground failure had on a number of bridges, roadway embankments, and railroads during this major earthquake.


2012 ◽  
Vol 28 (1_suppl1) ◽  
pp. 301-334 ◽  
Author(s):  
Cheng Song ◽  
Santiago Pujol ◽  
Andrés Lepage

The Alto Río Building, a 15-story building located in Concepción, Chile, collapsed during the 2010 Maule earthquake. Construction of the building was completed in 2009 following the Chilean building code of 1996. The building was provided with reinforced concrete structural walls (occupying nearly 7% of the floor area) to resist lateral and vertical loads. The walls failed in the first story, causing the overturning of the entire building. This paper provides detailed field observations and discusses plausible causes of the collapse.


2013 ◽  
Vol 40 (8) ◽  
pp. 722-734 ◽  
Author(s):  
Murat Saatcioglu ◽  
Robert Tremblay ◽  
Denis Mitchell ◽  
Ahmed Ghobarah ◽  
Dan Palermo ◽  
...  

This paper presents performance of steel buildings and nonstructural elements during the 27 February 2010 Maule Earthquake in Chile. Structural steel buildings are not common in Chile, due to the relatively high cost of material. The majority of damage to steel structures was observed in industrial facilities. In general, the structural steel buildings performed well. Limited damage was observed in some of the older buildings. Extensive damage was sustained by nonstructural elements, including masonry infill walls, suspended ceilings, partition walls, and architectural features. Brick masonry partition walls, commonly used in Chilean buildings, suffered damage when used in frame buildings with little drift control. The paper presents a summary of observed damage and a comparison of Chilean and Canadian design practices for steel buildings, with lessons drawn from observed structural performance.


2021 ◽  
pp. 875529302098801
Author(s):  
José Wilches ◽  
Hernán Santa Maria ◽  
Roberto Leon ◽  
Rafael Riddell ◽  
Matías Hube ◽  
...  

Chile, as a country with a long history of strong seismicity, has a record of both a constant upgrading of its seismic design codes and structural systems, particularly for bridges, as a result of major earthquakes. Recent earthquakes in Chile have produced extensive damage to highway bridges, such as deck collapses, large transverse residual displacements, yielding and failure of shear keys, and unseating of the main girders, demonstrating that bridges are highly vulnerable structures. Much of this damage can be attributed to construction problems and poor detailing guidelines in design codes. After the 2010 Maule earthquake, new structural design criteria were incorporated for the seismic design of bridges in Chile. The most significant change was that a site coefficient was included for the estimation of the seismic design forces in the shear keys, seismic bars, and diaphragms. This article first traces the historical development of earthquakes and construction systems in Chile to provide a context for the evolution of Chilean seismic codes. It then describes the seismic performance of highway bridges during the 2010 Maule earthquake, including the description of the main failure modes observed in bridges. Finally, this article provides a comparison of the Chilean bridge seismic code against the Japanese and United States codes, considering that these codes have a great influence on the seismic codes for Chilean bridges. The article demonstrates that bridge design and construction practices in Chile have evolved substantially in their requirements for the analysis and design of structural elements, such as in the definition of the seismic hazard to be considered, tending toward more conservative approaches in an effort to improve structural performance and reliability for Chilean bridges.


2011 ◽  
Vol 33 (5) ◽  
pp. 891-897 ◽  
Author(s):  
C. Arriagada ◽  
G. Arancibia ◽  
J. Cembrano ◽  
F. Martínez ◽  
D. Carrizo ◽  
...  

2008 ◽  
Vol 24 (2) ◽  
pp. 343-386 ◽  
Author(s):  
Yuyi Zhang ◽  
Joel P. Conte ◽  
Zhaohui Yang ◽  
Ahmed Elgamal ◽  
Jacobo Bielak ◽  
...  

This paper presents a two-dimensional advanced nonlinear FE model of an actual bridge, the Humboldt Bay Middle Channel (HBMC) Bridge, and its response to seismic input motions. This computational model is developed in the new structural analysis software framework OpenSees. The foundation soil is included to incorporate soil-foundation-structure interaction effects. Realistic nonlinear constitutive models for cyclic loading are used for the structural (concrete and reinforcing steel) and soil materials. The materials in the various soil layers are modeled using multi-yield-surface plasticity models incorporating liquefaction effects. Lysmer-type absorbing/transmitting boundaries are employed to avoid spurious wave reflections along the boundaries of the computational soil domain. Both procedures and results of earthquake response analysis are presented. The simulation results indicate that the earthquake response of the bridge is significantly affected by inelastic deformations of the supporting soil medium due to lateral spreading induced by soil liquefaction.


Author(s):  
Martin Zaleski ◽  
Gerald Ferris ◽  
Alex Baumgard

Earthquake hazard management for oil and gas pipelines should include both preparedness and response. The typical approach for management of seismic hazards for pipelines is to determine where large ground motions are frequently expected, and apply mitigation to those pipeline segments. The approach presented in this paper supplements the typical approach but focuses on what to do, and where to do it, just after an earthquake happens. In other words, we ask and answer: “Is the earthquake we just had important?”, “What pipeline is and what sites might it be important for?”, and “What should we do?” In general, modern, high-pressure oil and gas pipelines resist the direct effects of strong shaking, but are vulnerable to large co-seismic differential permanent ground displacement (PGD) produced by surface fault rupture, landslides, soil liquefaction, or lateral spreading. The approach used in this paper employs empirical relationships between earthquake magnitude, distance, and the occurrence of PGD, derived from co-seismic PGD case-history data, to prioritize affected pipeline segments for detailed site-specific hazard assessments, pre-event resiliency upgrades, and post-event response. To help pipeline operators prepare for earthquakes, pipeline networks are mapped with respect to earthquake probability and co-seismic PGD susceptibility. Geological and terrain analyses identify pipeline segments that cross PGD-susceptible ground. Probabilistic seismic models and deterministic scenarios are considered in estimating the frequency of sufficiently large and close causative earthquakes. Pipeline segments are prioritized where strong earthquakes are frequent and ground is susceptible to co-seismic PGD. These may be short-listed for mitigation that either reduces the pipeline’s vulnerability to damage or limits failure consequences. When an earthquake occurs, pipeline segments with credible PGD potential are highlighted within minutes of an earthquake’s occurrence. These assessments occur in near-real-time as part of an online geohazard management database. The system collects magnitude and location data from online earthquake data feeds and intersects them against pipeline network and terrain hazard map data. Pipeline operators can quickly mobilize inspection and response resources to a focused area of concern.


Sign in / Sign up

Export Citation Format

Share Document