Impact of Steroids on Hepatitis C Virus Replication in Vivo and in Vitro

2007 ◽  
Vol 1110 (1) ◽  
pp. 439-447 ◽  
Author(s):  
S. D. HENRY ◽  
H. J. METSELAAR ◽  
J. VAN DIJCK ◽  
H. W. TILANUS ◽  
L. J. W. VAN DER LAAN
2017 ◽  
Vol 49 (8) ◽  
pp. 1947-1955 ◽  
Author(s):  
A. Frey ◽  
E.-M. Ecker ◽  
K. Piras-Straub ◽  
A. Walker ◽  
T.G. Hofmann ◽  
...  

2012 ◽  
Vol 42 (9) ◽  
pp. 841-853 ◽  
Author(s):  
Kazuaki Chayama ◽  
C. Nelson Hayes ◽  
Michio Imamura

2011 ◽  
Vol 55 (1) ◽  
pp. 11-18 ◽  
Author(s):  
Hiromi Abe ◽  
Michio Imamura ◽  
Nobuhiko Hiraga ◽  
Masataka Tsuge ◽  
Fukiko Mitsui ◽  
...  

2006 ◽  
Vol 44 (08) ◽  
Author(s):  
P Hilgard ◽  
R Bröring ◽  
M Trippler ◽  
S Viazov ◽  
G Gerken ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Mark G. Swain ◽  
John L. Wallace ◽  
D. Lorne Tyrrell ◽  
José Cabanillas ◽  
Steven K. H. Aung ◽  
...  

The purpose of this study was to determine the efficacy of a Peruvian botanical formulation for treating disorders of hepatic function and gastric mucosal integrity. The formulation A4+ (Sabell Corporation) contains extracts of Curcuma longa rhizome, Cordia lutea flower, and Annona muricata leaf. Individually these plants have been used as traditional remedies for liver disease. We report the efficacy of A4+ and its components using a variety of in vitro and in vivo disease models. The methods used included tests for antioxidant, anti-inflammatory, and antiviral activity as well as mouse models of liver disease, including Concanavalin A-induced immune-mediated hepatitis and a bile duct ligation model for evaluating sickness behaviour associated with liver disease. Rat models were used to evaluate the gastric mucosal protective property of A4+ following indomethacin challenge and to evaluate its anti-inflammatory action in an “air pouch” model. In all tests, A4+ proved to be more effective than placebo. A4+ was antioxidant and anti-inflammatory and diminished Hepatitis C virus replication in vitro. In animal models, A4+ was shown to protect the liver from immune-mediated hepatitis, improve behavioural function in animals with late stage liver disease, and protect the rat gastric mucosa from ulceration following NSAID exposure. We conclude that A4+ ameliorated many aspects of liver injury, inhibited hepatitis C virus replication, and protected the gastric mucosa from NSAIDs. These varied beneficial properties appear to result from positive interactions between the three constituent herbs.


2014 ◽  
Vol 59 (1) ◽  
pp. 25-37 ◽  
Author(s):  
Lin-Zhi Chen ◽  
John P. Sabo ◽  
Elsy Philip ◽  
Lois Rowland ◽  
Yan Mao ◽  
...  

ABSTRACTThe pharmacokinetics, mass balance, and metabolism of deleobuvir, a hepatitis C virus (HCV) polymerase inhibitor, were assessed in healthy subjects following a single oral dose of 800 mg of [14C]deleobuvir (100 μCi). The overall recovery of radioactivity was 95.2%, with 95.1% recovered from feces. Deleobuvir had moderate to high clearance, and the half-life of deleobuvir and radioactivity in plasma were ∼3 h, indicating that there were no metabolites with half-lives significantly longer than that of the parent. The most frequently reported adverse events (in 6 of 12 subjects) were gastrointestinal disorders. Two major metabolites of deleobuvir were identified in plasma: an acyl glucuronide and an alkene reduction metabolite formed in the gastrointestinal (GI) tract by gut bacteria (CD 6168), representing ∼20% and 15% of the total drug-related material, respectively. Deleobuvir and CD 6168 were the main components in the fecal samples, each representing ∼30 to 35% of the dose. The majority of the remaining radioactivity found in the fecal samples (∼21% of the dose) was accounted for by three metabolites in which deleobuvir underwent both alkene reduction and monohydroxylation. In fresh human hepatocytes that form biliary canaliculi in sandwich cultures, the biliary excretion for these excretory metabolites was markedly higher than that for deleobuvir and CD 6168, implying that rapid biliary elimination upon hepatic formation may underlie the absence of these metabolites in circulation. The lowin vitroclearance was not predictive of the observedin vivoclearance, likely because major deleobuvir biotransformation occurred by non-CYP450-mediated enzymes that are not well represented in hepatocyte-basedin vitromodels.


2011 ◽  
Vol 56 (3) ◽  
pp. 1331-1341 ◽  
Author(s):  
Philip J. F. Troke ◽  
Marilyn Lewis ◽  
Paul Simpson ◽  
Katrina Gore ◽  
Jennifer Hammond ◽  
...  

ABSTRACTFilibuvir (PF-00868554) is an investigational nonnucleoside inhibitor of the hepatitis C virus (HCV) nonstructural 5B (NS5B) RNA-dependent RNA polymerase currently in development for treating chronic HCV infection. The aim of this study was to characterize the selection of filibuvir-resistant variants in HCV-infected individuals receiving filibuvir as short (3- to 10-day) monotherapy. We identified amino acid M423 as the primary site of mutation arising upon filibuvir dosing. Through bulk cloning of clinical NS5B sequences into a transient-replicon system, and supported by site-directed mutagenesis of the Con1 replicon, we confirmed that mutations M423I/T/V mediate phenotypic resistance. Selection in patients of an NS5B mutation at M423 was associated with a reduced replicative capacityin vitrorelative to the pretherapy sequence; consistent with this, reversion to wild-type M423 was observed in the majority of patients following therapy cessation. Mutations at NS5B residues R422 and M426 were detected in a small number of patients at baseline or the end of therapy and also mediate reductions in filibuvir susceptibility, suggesting these are rare but clinically relevant alternative resistance pathways. Amino acid variants at position M423 in HCV NS5B polymerase are the preferred pathway for selection of viral resistance to filibuvirin vivo.


2019 ◽  
Vol 2 (1) ◽  
pp. 23-30
Author(s):  
Mark Collister ◽  
Julia Rempel ◽  
Jiaqi Yang ◽  
Kelly Kaita ◽  
Zach Raizman ◽  
...  

Background: Interleukin 32 (IL-32) is a recently described pro-inflammatory cytokine implicated in chronic hepatitis C virus (HCV)-related inflammation and fibrosis. IL-32α is the most abundant IL-32 isoform. Methods: Circulating IL-32α levels were documented in patients with chronic HCV infections ( n = 31) and compared with individuals who spontaneously resolved HCV infection ( n = 14) and HCV-naive controls ( n = 20). In addition, peripheral blood mononuclear cells (PBMC) from the chronic HCV ( n = 12) and HCV-naive ( n = 9) cohorts were investigated for responses to HCV core and non-structural (NS)3 protein induced IL-32α production. Finally, correlations between IL-32α levels, hepatic fibrosis and subsequent responses to interferon-based therapy were documented in patients with chronic HCV. Results: Circulating IL-32α levels in patients with chronic HCV were similar to those of spontaneously resolved and HCV-naive controls. HCV protein induced IL-32α responses were similar in chronic HCV patients and HCV-naive controls. In patients with chronic HCV, serum IL-32α levels correlated with worsening METAVIR fibrosis (F) scores from F0 to F3 ( r = 0.596, P < 0.001) as did NS3 induced IL-32α responses ( r = 0.837, P < 0.05). However, these correlations were not sustained with the inclusion of IL-32α levels at F4 scores, suggesting events at F4 interfere with IL-32α synthesis or release. In chronic HCV patients who underwent treatment ( n = 28), baseline in vivo and in vitro induced IL-32α concentrations were not predictive of therapeutic outcomes. Conclusions: IL-32α activity is associated with worsening fibrosis scores in non-cirrhotic, chronic HCV patients.


Sign in / Sign up

Export Citation Format

Share Document