Fluorescence In Situ Hybridization on Peripheral-Blood Specimens Is a Reliable Method to Evaluate Cytogenetic Response in Chronic Myeloid Leukemia

2000 ◽  
Vol 18 (7) ◽  
pp. 1533-1538 ◽  
Author(s):  
Steven Le Gouill ◽  
Pascaline Talmant ◽  
Noël Milpied ◽  
Axelle Daviet ◽  
Michèle Ancelot ◽  
...  

PURPOSE: To evaluate the usefulness of fluorescence in situ hybridization (FISH) on peripheral-blood specimens to evaluate the cytogenetic response to treatment in patients with chronic myeloid leukemia (CML). PATIENTS AND METHODS: In a first attempt, we analyzed 62 bone marrow specimens using interphase FISH and compared the results with those of conventional cytogenetics. In a second step, we analyzed 60 paired sets of bone marrow and peripheral-blood specimens with interphase FISH. RESULTS: The results of interphase FISH agreed with conventional cytogenetics on bone marrow for most patients, and only minor differences were found (r = .98). The comparison of interphase FISH on bone marrow versus peripheral-blood specimens showed a strong correlation between these two specimen sources (r = .97). CONCLUSION: Our results confirmed that FISH is a sensitive technique for the evaluation of response to treatment in patients with CML. Moreover, our study suggests that follow-up of cytogenetic response to therapy can be evaluated on peripheral-blood specimens, thus enabling an easier and more frequent evaluation of patients. The next step will be to evaluate this technique in a large prospective trial to define the prognostic value of complete remissions evaluated by FISH.

Blood ◽  
1998 ◽  
Vol 92 (7) ◽  
pp. 2315-2321 ◽  
Author(s):  
Ismael Buño ◽  
William A. Wyatt ◽  
Alan R. Zinsmeister ◽  
Jeanne Dietz-Band ◽  
Richard T. Silver ◽  
...  

Abstract Using a highly sensitive fluorescence in situ hybridization method with probes for BCR and ABL1 (D-FISH), we studied 37 paired sets of bone marrow and blood specimens, collected within 24 to 96 hours of each other, from 10 patients before and during treatment for chronic myeloid leukemia (CML). The normal range for 500 interphase nuclei was ≤4 (≤0.8%) nuclei based on 10 bone marrow and 10 blood specimens from normal individuals. The percentage of neoplastic nuclei was usually lower in blood than bone marrow. However, changes in the percentage of neoplastic nuclei in blood and bone marrow tracked closely over the course of therapy and with the results of quantitative cytogenetic studies on bone marrow. This result indicates that D-FISH is useful to test blood from patients with CML to monitor therapy. Moreover, by analysis of 6,000 nuclei with D-FISH, residual disease was identified in bone marrow and blood for patients in complete cytogenetic remission. Consequently, D-FISH analyses of interphase nuclei from blood could substitute for Q-cytogenetic studies on bone marrow. Thus, it may not be necessary to collect bone marrow samples so frequently to monitor therapy in CML.


Blood ◽  
1998 ◽  
Vol 92 (7) ◽  
pp. 2315-2321 ◽  
Author(s):  
Ismael Buño ◽  
William A. Wyatt ◽  
Alan R. Zinsmeister ◽  
Jeanne Dietz-Band ◽  
Richard T. Silver ◽  
...  

Using a highly sensitive fluorescence in situ hybridization method with probes for BCR and ABL1 (D-FISH), we studied 37 paired sets of bone marrow and blood specimens, collected within 24 to 96 hours of each other, from 10 patients before and during treatment for chronic myeloid leukemia (CML). The normal range for 500 interphase nuclei was ≤4 (≤0.8%) nuclei based on 10 bone marrow and 10 blood specimens from normal individuals. The percentage of neoplastic nuclei was usually lower in blood than bone marrow. However, changes in the percentage of neoplastic nuclei in blood and bone marrow tracked closely over the course of therapy and with the results of quantitative cytogenetic studies on bone marrow. This result indicates that D-FISH is useful to test blood from patients with CML to monitor therapy. Moreover, by analysis of 6,000 nuclei with D-FISH, residual disease was identified in bone marrow and blood for patients in complete cytogenetic remission. Consequently, D-FISH analyses of interphase nuclei from blood could substitute for Q-cytogenetic studies on bone marrow. Thus, it may not be necessary to collect bone marrow samples so frequently to monitor therapy in CML.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4992-4992
Author(s):  
Wei Xu ◽  
Jianyong Li ◽  
Jinlan Pan ◽  
Li Li ◽  
Hairong Qiu ◽  
...  

Abstract The most frequent chromosomal abnormalities in B-cell chronic lymphocytic leukaemia (B-CLL) are deletions on 13q14 and 17p13, trisomy 12 and 14q32 rearrangement. Conventional metaphase cytogenetic analysis underestimates the frequency of specific chromosome aberrations in B-CLL due to the low rate of spontaneous mitoses and poor response to mitogen stimulation. The aim of this study was to investigate the incidence of chromosomal changes in bone marrow or peripheral blood cells (or both) of B-CLL patients using a molecular cytogenetic method, interphase fluorescence in situ hybridization (I-FISH). Probes for 13q14 (D13S319), 17p13 (P53 gene), the centromere of chromosome 12 (D12Z3) and 14q32 (Ig10 and Y6) were applied to detect chromosomal aberrations on bone marrow and peripheral blood smears from 83 B-CLL patients (60 male, 23 female,). Molecular cytogenetic aberrations were found in 60 (72.3%) cases, and 8 (9.6%) patients showed two kinds of abnormalities. The most frequent abnormalities detected in our patients was deletions of 13q14 in 34 cases (41.0%), followed by trisomy of chromosome 12 in 16 patients (19.3%), deletions of 17p13 in 10 patients (12%) and 14q32 rearrangement in 8 patients (9.6%). Statistical analyses were performed to correlate the molecular cytogenetic findings with Binet stages. No apparent differences in distribution were noted for anomalies del(13q14), del(17p13), +12 or 14q32 rearrangement among patients with various Binet stages. FISH was found to be a more rapid, exact and sensitive technique for the analysis of chromosome aberrations in CLL. FISH could provide accurate information of molecular cytogenetics for CLL.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2592-2592
Author(s):  
Giovanna Rege-Cambrin ◽  
Carmen Fava ◽  
Enrico Gottardi ◽  
Filomena Daraio ◽  
Emilia Giugliano ◽  
...  

Abstract Background Consensus has been achieved that standardized molecular quantitative analysis (RQ-PCR) on peripheral blood (PB) is a suitable method for monitoring residual disease in chronic myeloid leukemia (CML). However, BM is still obtained at specific timepoints, and in a number of cases, only bone marrow (BM) sample collected for cytogenetic analysis is available. Being one of the laboratory involved in the standardization process of molecular monitoring for CML patients, we decided to perform a comparative analysis of BM and PB samples in order to evaluate the consistency of the results. Methods Between March 2009 and January 2013, 230 consecutive RQ-PCR tests to assess BCR-ABL transcript levels from simultaneously collected PB and BM samples were performed (for a total of 460 analysis) on 77 patients affected by Ph+ CML in chronic phase treated in our center. All samples were analyzed in the same laboratory following international guidelines (Cross N, Leukemia 2012) and results were expressed according to the International Scale; ABL1 was used as control gene. Time from blood-drawn to processing was within 3-4 hours. Results Among the 230 pairs, 3 were considered as not evaluable because of inadequate material; for the purpose of this study, the remaining 227 pairs were considered as “evaluable”. 204 pairs were classified as “fit” when both BM and PB ABL amplification resulted in more than 10.000 copies; 23 pairs were considered unfit for ABL1 <10.000 in either one of the two samples (21) or both (2). The mean number of ABL1 copies in all evaluable samples was 35.639 for BM (SD 21.465) and 30.958 for PB samples (SD 18.696). Correlation analysis was performed on the whole population and in 4 subgroups: No Complete Cytogenetic Response (CCyR, 22%), CCyR without Major Molecular Response (MMR), (21.6%), CCyR with MMR (excluding patients with MR4 or better,19.8%), and CCyR with MR4 – MR4.5 (32,6%). Cytogenetic response was not available in 9 BM samples (4%), not included in the subgroup analysis. Spearman correlation of BCR/ABL ratio values between PB versus BM paired samples resulted in a statistically significant correlation in all groups, both for evaluable and fit pairs. Correlation was stronger in samples that were not in MMR or better (table 1 and figure 1). The Wilcoxon test showed that the mean difference of BCR/ABL values between paired PB and BM samples was not significantly different from zero (in evaluable and fit pairs by considering the whole population). Concordance was further analyzed by the K test which resulted in a coefficient equal to 0.627, corresponding to a notable degree of concordance. For patients in CCyR, agreement on classification of response (MMR, MR4, MR4.5) between paired PB and BM samples was observed in 125/168 evaluable pairs; 22 out of the 43 evaluable cases of disagreement were due to technical failures (in 10 BM and 12 PB samples). In 14 of the remaining 21 cases, PB was more sensitive. Conclusions In a single center experience of molecular analysis, BCR/ABL ratio was highly consistent in BM and PB samples. In less than 10% of the cases a single test did not reach the required sensitivity of 10.000 ABL copies and the double testing allowed to obtain a valid result. This may be especially valuable in evaluating an early response (i.e. at 3 months), when the amount of disease has prognostic relevance. The analysis will be expanded to include samples coming from different centers to evaluate a possible role of timing and transport on data consistency. Disclosures: Saglio: Novartis: Consultancy, Honoraria; Bristol Myers Squibb: Consultancy, Honoraria; ARIAD: Consultancy, Honoraria; Celgene: Consultancy, Honoraria.


2009 ◽  
Vol 27 (15_suppl) ◽  
pp. e19558-e19558
Author(s):  
S. Park ◽  
C. Kim ◽  
H. Kim ◽  
D. Hong ◽  
S. Lee ◽  
...  

e19558 Background: Multiple myeloma is characterized by the accumulation of malignant plasma cells within the bone marrow and regarded as incurable, but remissions may be induced with steroids, chemotherapy, thalidomide and stem cell transplants. The clinical heterogeneity of myeloma is dictated by the cytogenetic aberrations present in the clonal plasma cells. Fluorescence in situ hybridization (FISH) overcomes the limitations of standard cytogenetics and allows for the detection of numerical and structural chromosomal abnormalities in both metaphase spreads and interphase nuclei. Methods: We evaluated the chromosome abnormalities in 34 MM patients using conventional cytogenetics and interphase FISH with 6 probes such as IGH/CCND1, IGH/FGFR3, IGH/MAF, DS13S319/LAMP1, IGH/BAP, and p53/CEP17. Results: Cytogenetic abnormalities were found in 24 (70.6%) of the 28 MM patients. 10 (35.7%) patients had abnormal metaphases by conventional cytogenetics. Interphase FISH results were abnormal in 21 (61.8%) patients and 11 (52.3%) patients had abnormal interphase FISH but normal metaphases. The evidence of the loss of D13S319 with or without loss of LAMP1 was found in 6 (21.4%) patients, and loss of p53±CEP17 for 2 patients, IGH-BAP for 9 (26.5%) patients, IGH/FGFR3 for 2 patients, and IGH/CCND1 for 7 (20.6%) patients, respectively. However, there were none positive for IGH/MAF. Chromosome 13 abnormalities and IGH rearrangement is correlated with poor clinical outcome. Conclusions: Interphase FISH can provide useful information to evaluate the presence of prognostic chromosome abnormalities in addition to metaphase cytogenetics. And it should be used in the routine evaluation of multiple myeloma. No significant financial relationships to disclose.


2001 ◽  
Vol 119 (1) ◽  
pp. 16-18
Author(s):  
Maria de Lourdes Lopes Ferrari Chauffaille ◽  
José Salvador Rodrigues Oliveira ◽  
Maura Romeo ◽  
José Kerbauy

CONTEXT: Identification of Philadelphia chromosome or BCR/ABL gene rearrangement in chronic myeloid leukemia is important at diagnosis as well as after treatment. OBJECTIVE: To compare the results of karyotyping using fluorescent in-situ hybridization (FISH) upon diagnosis and 1 year after bone marrow transplantation in 12 patients. TYPE OF STUDY: Diagnostic test and residual disease detection. SETTING: Hematology and Hemotherapy Department, Federal University of São Paulo/Escola Paulista de Medicina, São Paulo, Brazil. SAMPLE: 12 patients with chronic myeloid leukemia at diagnosis and 1 year after bone marrow transplantation. DIAGNOSTIC TEST: Karyotyping was done in the usual way and the BCR/ABL gene-specific probe was used for FISH. MAIN MEASUREMENTS: Disease at diagnosis and residual. RESULTS: At diagnosis, 10 patients presented t(9;22)(q34.1;q11) as well as positive FISH. Two cases did not have metaphases but FISH was positive. After bone marrow transplantation, 8 patients presented normal karyotype, 1 had persistence of identifiable Philadelphia chromosome and 3 had no metaphases. Two cases showed complete chimera and 2 had donor and host cells simultaneously. FISH was possible in all cases after bone marrow transplantation and confirmed the persistence of identifiable Philadelphia chromosome clone in one patient, and identified another that did not present metaphases for analysis. Cases that showed mixed chimera in karyotype were negative for BCR/ABL by FISH. CONCLUSION: The applicability of FISH is clear, particularly for residual disease detection. Classical and molecular cytogenetics are complementary methods.


Blood ◽  
2009 ◽  
Vol 114 (24) ◽  
pp. 4939-4943 ◽  
Author(s):  
Nicoletta Testoni ◽  
Giulia Marzocchi ◽  
Simona Luatti ◽  
Marilina Amabile ◽  
Carmen Baldazzi ◽  
...  

Abstract In chronic myeloid leukemia, different methods are available to monitor the response to therapy: chromosome banding analysis (CBA), interphase fluorescence in situ hybridization (I-FISH), and real-time quantitative polymerase chain reaction (RT-Q-PCR). The GIMEMA CML WP (Gruppo Italiano Malattie Ematologiche Adulto Chronic Myeloid Leukemia Working Party) has performed a prospective study to compare CBA and I-FISH for the definition of complete cytogenetic response (CCgR). Samples (n = 664) were evaluated simultaneously by CBA and I-FISH. Of 537 cases in CCgR, the number of positive nuclei by I-FISH was less than 1% in 444 cases (82.7%). Of 451 cases with less than 1% positive nuclei by I-FISH, 444 (98.4%) were classified as CCgR by CBA. The major molecular response rate was significantly greater in cases with I-FISH less than 1% than in those with I-FISH 1% to 5% (66.8% vs 51.6%, P < .001) and in cases with CCgR and I-FISH less than 1% than in cases with CCgR and I-FISH 1% to 5% (66.1% vs 49.4%, P = .004). I-FISH is more sensitive than CBA and can be used to monitor CCgR. With appropriate probes, the cutoff value of I-FISH may be established at 1%. These trials are registered at http://www.clinicaltrials.gov as NCT00514488 and NCT00510926.


Sign in / Sign up

Export Citation Format

Share Document