Anaplastic Lymphoma Kinase Aberrations in Rhabdomyosarcoma: Clinical and Prognostic Implications

2012 ◽  
Vol 30 (3) ◽  
pp. 308-315 ◽  
Author(s):  
J. Carlijn van Gaal ◽  
Uta E. Flucke ◽  
Melissa H.S. Roeffen ◽  
Eveline S.J.M. de Bont ◽  
Stefan Sleijfer ◽  
...  

Purpose The aim of this study is to investigate anaplastic lymphoma kinase (ALK) protein expression and underlying genetic aberrations in rhabdomyosarcoma (RMS), with special attention to clinical and prognostic implications. Patients and Methods A total of 189 paraffin-embedded RMS tumor specimens from 145 patients were collected on tissue microarray. ALK protein expression was evaluated by immunohistochemistry. ALK gene (2p23) copy number and translocations were determined by in situ hybridization. cDNA sequencing of the receptor tyrosine kinase domain of the ALK gene was assessed in 43 samples. Results Strong cytoplasmic ALK protein expression was more frequently observed in alveolar RMS (ARMS) than in embryonal RMS (ERMS) (81% v 32%, respectively; P < .001). ALK gene copy number gain was detected in the vast majority of ARMS (88%), compared with 52% of ERMS (P < .001). ALK copy number correlated with protein expression in primary tumors (n = 107). We identified one point mutation (2%) and seven tumors harboring whole exon deletions (16%). In ERMS, specific ALK gain in the primary tumor correlated with metastatic disease (100% in metastatic disease v 29% in nonmetastatic disease; P = .004) and poor disease-specific survival (5-year disease-specific survival: 62% v 82% for nonspecific or no gain; P = .046). Conclusion Because ALK aberrations on genomic and protein levels are frequently found in RMSs, in particular ARMS, and are associated with disease progression and outcome in ERMS, ALK may play a role in tumor biology and may provide a potential therapeutic target for these tumors. Future research should aim at the oncogenic role of ALK and the potential effect of ALK inhibitors in RMS.

2010 ◽  
Vol 28 (13) ◽  
pp. 2174-2180 ◽  
Author(s):  
Rafal Dziadziuszko ◽  
Daniel T. Merrick ◽  
Samir E. Witta ◽  
Adelita D. Mendoza ◽  
Barbara Szostakiewicz ◽  
...  

PurposeThe purpose of this study was to characterize insulin-like growth factor-1 receptor (IGF1R) protein expression, mRNA expression, and gene copy number in surgically resected non–small-cell lung cancers (NSCLC) in relation to epidermal growth factor receptor (EGFR) protein expression, patient characteristics, and prognosis.Patients and MethodsOne hundred eighty-nine patients with NSCLC who underwent curative pulmonary resection were studied (median follow-up, 5.3 years). IGF1R protein expression was evaluated by immunohistochemistry (IHC) with two anti-IGF1R antibodies (n = 179). EGFR protein expression was assessed with PharmDx kit. IGF1R gene expression was evaluated using quantitative reverse transcription polymerase chain reaction (qRT-PCR) from 114 corresponding fresh-frozen samples. IGF1R gene copy number was assessed by fluorescent in situ hybridization using customized probes (n = 181).ResultsIGF1R IHC score was higher in squamous cell carcinomas versus other histologies (P < .001) and associated with stage (P = .03) but not survival (P = .46). IGF1R and EGFR protein expression showed significant correlation (r = 0.30; P < .001). IGF1R gene expression by qRT-PCR was higher in squamous cell versus other histologies (P = .006) and did not associate with other clinical features nor survival (P = .73). Employing criteria previously established for EGFR copy number, patients with IGF1R amplification/high polysomy (n = 48; 27%) had 3-year survival of 58%, patients with low polysomy (n = 87; 48%) had 3-year survival of 47% and patients with trisomy/disomy (n = 46; 25%) had 3-year survival of 35%, respectively (P = .024). Prognostic value of high IGF1R gene copy number was confirmed in multivariate analysis.ConclusionIGF1R protein expression is higher in squamous cell versus other histologies and correlates with EGFR expression. IGF1R protein and gene expression does not associate with survival, whereas high IGF1R gene copy number harbors positive prognostic value.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 6023-6023
Author(s):  
P. Weinberger ◽  
A. Psyrri ◽  
P. Kountourakis ◽  
T. Rampias ◽  
C. Sasaki ◽  
...  

6023 Background: EGFR overexpression correlates with recurrence and with treatment resistance in HNSCC. The mechanisms of EGFR protein overexpression are poorly understood. Nonetheless, previous investigators have not demonstrated a correlation between EGFR gene copy number and protein content, using conventional immunohistochemistry (IHC). The aim of this study was to evaluate the relationship of EGFR gene copy number and protein expression utilizing fluorescence in situ hybridization (FISH) and AQUA, a novel, immunohistochemical method of automated quantitative in situ proteomic analysis which permits subcellular localization. Methods: A tissue microarray composed of 137 HNSCC treated with (chemo)radiation was constructed and analyzed for EGFR copy number by FISH (Vysis/Abbot) and EGFR protein expression (DAKO antibody) using AQUA analysis of EGFR staining scored on a scale of 0–255 and by conventional IHC. Agreement was assessed using kappa. Results: Sixteen (15%) of one-hundred six tumors with FISH results demonstrated EGFR high polysomy and/or gene amplification (FISH+). AQUA demonstrated a range of 3.6–102.2; protein levels assessed by AQUA in the FISH amplified cases were significantly higher (p =0.008) than in the FISH non- amplified ones. Using the EGFR 75th percentile as a cut-off, AQUA and FISH showed significant agreement (percentage of overall agreement 82%, kappa=0.458, p=0.003). To the contrary there was no concordance between FISH and conventional IHC results in this series. Conclusions: The discrepancy between EGFR gene amplification rate and protein expression by IHC reported previously may be due to the limitations and nonquantitative nature of conventional IHC. EGFR protein content correlates with gene copy number if protein content is quantitated and automatically analyzed, as with AQUA. No significant financial relationships to disclose.


2010 ◽  
Vol 28 (15_suppl) ◽  
pp. 10584-10584
Author(s):  
A. Badzio ◽  
M. W. Wynes ◽  
R. Dziadziuszko ◽  
D. Merrick ◽  
M. Pardo ◽  
...  

2017 ◽  
Vol 99 (2) ◽  
pp. 222-228 ◽  
Author(s):  
Filip Poelaert ◽  
Candy Kumps ◽  
Nicolaas Lumen ◽  
Stephanie Verschuere ◽  
Louis Libbrecht ◽  
...  

2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 6063-6063
Author(s):  
M. Varella-Garcia ◽  
K. Acheson ◽  
G. B. Marshall ◽  
R. M. McCormack ◽  
A. Ryan ◽  
...  

6063 Background: EGFR gene copy number has previously been reported to predict for improved overall survival in NSCLC patients treated with gefitinib (IRESSA) or erlotinib compared with placebo [JCO 2006;24:5034–42 & N Engl J Med 2005;353:133–44]. The utility of EGFR gene copy number as a predictive biomarker in other tumour types such as squamous cell carcinoma of the head and neck (SCCHN) is currently under clinical investigation. The present study examined a panel of 20 SCCHN cell lines to identify potential biomarkers predicting in vitro sensitivity to EGFR tyrosine kinase inhibitors (TKIs). Methods: A panel of 20 SCCHN cell lines was screened for sensitivity to gefitinib, vandetanib or erlotinib using a viable cell number endpoint, with G150 values determined for each cell line (inhibitor concentration required to give 50% growth inhibition). Cell lines were blinded and assessed for EGFR, HER2 and HER3 protein expression by ELISA, mutation status by dye-terminator sequencing, and gene copy number by fluorescence in situ hybridisation (FISH). Results: A broad range in sensitivity was observed for all compounds across the panel of 20 SCCHN cell lines (G150 ranging from 0.001uM to =10uM). 12 cell lines were positive for EGFR genomic gain. Sensitivity (GI50 <1uM) to all EGFR TKIs was seen in 11 lines and resistance (GI50 >8uM) in 5 lines. Of the sensitive cell lines, 9 were positive for EGFR genomic gain compared with only 1 of the resistant lines. Furthermore, EGFR protein expression also had a direct association with EGFR TKI sensitivity. In contrast, only 4 cell lines were positive for HER2 or HER3 genomic gain and there was no correlation with sensitivity. The most sensitive cell line was positive for EGFR genomic gain and was the only line to have an EGFR TK mutation (S768I in exon 20). Conclusions: EGFR gene copy number and protein expression appeared to have predictive value in identifying SCCHN cell lines sensitive to EGFR TKIs. No significant financial relationships to disclose.


Sign in / Sign up

Export Citation Format

Share Document