scholarly journals Epigenetics Meets Genetics in Acute Myeloid Leukemia: Clinical Impact of a Novel Seven-Gene Score

2014 ◽  
Vol 32 (6) ◽  
pp. 548-556 ◽  
Author(s):  
Guido Marcucci ◽  
Pearlly Yan ◽  
Kati Maharry ◽  
David Frankhouser ◽  
Deedra Nicolet ◽  
...  

PurposeMolecular risk stratification of acute myeloid leukemia (AML) is largely based on genetic markers. However, epigenetic changes, including DNA methylation, deregulate gene expression and may also have prognostic impact. We evaluated the clinical relevance of integrating DNA methylation and genetic information in AML.MethodsNext-generation sequencing analysis of methylated DNA identified differentially methylated regions (DMRs) associated with prognostic mutations in older (≥ 60 years) cytogenetically normal (CN) patients with AML (n = 134). Genes with promoter DMRs and expression levels significantly associated with outcome were used to compute a prognostic gene expression weighted summary score that was tested and validated in four independent patient sets (n = 355).ResultsIn the training set, we identified seven genes (CD34, RHOC, SCRN1, F2RL1, FAM92A1, MIR155HG, and VWA8) with promoter DMRs and expression associated with overall survival (OS; P ≤ .001). Each gene had high DMR methylation and lower expression, which were associated with better outcome. A weighted summary expression score of the seven gene expression levels was computed. A low score was associated with a higher complete remission (CR) rate and longer disease-free survival and OS (P < .001 for all end points). This was validated in multivariable models and in two younger (< 60 years) and two older independent sets of patients with CN-AML. Considering the seven genes individually, the fewer the genes with high expression, the better the outcome. Younger and older patients with no genes or one gene with high expression had the best outcomes (CR rate, 94% and 87%, respectively; 3-year OS, 80% and 42%, respectively).ConclusionA seven-gene score encompassing epigenetic and genetic prognostic information identifies novel AML subsets that are meaningful for treatment guidance.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4396-4396
Author(s):  
Ingo Tamm ◽  
Stephan Richter ◽  
Doreen Oltersdorf ◽  
Ursula Creutzig ◽  
Jochen Harbott ◽  
...  

Abstract Apoptosis-related proteins are important molecules for predicting chemotherapy response and prognosis in adult acute myeloid leukemia (AML). However, data on the expression and prognostic impact of these molecules in childhood AML are rare. Using flow cytometry and western blot analysis, we therefore investigated 45 leukemic cell samples of children with de novo AML enrolled and treated within the German AML-BFM93 study for the expression of apoptosis-regulating proteins (CD95, Bcl-2, Bax, Bcl-xL, Procaspase-3, XIAP, cIAP-1, Survivin). XIAP (p&lt;0.002) but no other apoptosis regulators showed maturation-dependent expression differences as determined by FAB morphology with the highest expression levels observed within the immature M0/1 subtypes. XIAP (p&lt;0.01) and Bcl-xL (p&lt;0.01) expression was lower in patients with favorable than intermediate/poor cytogenetics. After a mean follow-up of 34 months, a shorter overall survival was associated with high expression levels of XIAP {30 (n=10) vs. 41 months (n=34); p&lt;0.05} and Survivin {27 (n=10) vs. 41 months (n=34); p&lt;0.05}. We conclude that apoptosis-related molecules are associated with maturation stage, cytogenetic risk groups and therapy outcome in childhood de novo AML. The observed association of XIAP with immature FAB types, intermediate/poor cytogenetics and poor overall survival should be confirmed within prospective pediatric AML trials.


Blood ◽  
2012 ◽  
Vol 120 (2) ◽  
pp. 249-258 ◽  
Author(s):  
Ann-Kathrin Eisfeld ◽  
Guido Marcucci ◽  
Kati Maharry ◽  
Sebastian Schwind ◽  
Michael D. Radmacher ◽  
...  

Abstract High BAALC expression levels are associated with poor outcome in cytogenetically normal acute myeloid leukemia (CN-AML) patients. Recently, miR-3151 was discovered in intron 1 of BAALC. To evaluate the prognostic significance of miR-3151 expression levels and to gain insight into the biologic and prognostic interplay between miR-3151 and its host, miR-3151 and BAALC expression were measured in pretreatment blood of 179 CN-AML patients. Gene-expression profiling and miRNA-expression profiling were performed using microarrays. High miR-3151 expression was associated with shorter disease-free and overall survival, whereas high BAALC expression predicted failure of complete remission and shorter overall survival. Patients exhibiting high expression of both miR-3151 and BAALC had worse outcome than patients expressing low levels of either gene or both genes. In gene-expression profiling, high miR-3151 expressers showed down-regulation of genes involved in transcriptional regulation, posttranslational modification, and cancer pathways. Two genes, FBXL20 and USP40, were validated as direct miR-3151 targets. The results of the present study show that high expression of miR-3151 is an independent prognosticator for poor outcome in CN-AML and affects different outcome end points than its host gene, BAALC. The combination of both markers identified a patient subset with the poorest outcome. This interplay between an intronic miR and its host may have important biologic implications.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5228-5228
Author(s):  
Genki Yamato ◽  
Hiroki Yamaguchi ◽  
Hiroshi Handa ◽  
Norio Shiba ◽  
Satoshi Wakita ◽  
...  

Abstract Background Acute myeloid leukemia (AML) is a complex disease caused by various genetic alterations. Some prognosis-associated cytogenetic aberrations or gene mutations such as FLT3-internal tandem duplication (ITD), t(8;21)(q22;q22)/RUNX1-RUNX1T1, and inv(16)(p13q22)/CBFB-MYH11 have been found and used to stratify the risk. Numerous gene mutations have been implicated in the pathogenesis of AML, including mutations of DNMT3A, IDH1/2, TET2 and EZH2 in addition to RAS, KIT, NPM1, CEBPA and FLT3in the recent development of massively parallel sequencing technologies. However, even after incorporating these molecular markers, the prognosis is unclear in a subset of AML patients. Recently, NUP98-NSD1 fusion gene was identified as a poor prognostic factor for AML. We have reported that all pediatric AML patients with NUP98-NSD1 fusion showed high expression of the PR domain containing 16 (PRDM16; also known as MEL1) gene, which is a zinc finger transcription factor located near the breakpoint at 1p36. PRDM16 is highly homologous to MDS1/EVI1, which is an alternatively spliced transcript of EVI1. Furthermore, PRDM16 is essential for hematopoietic stem cell maintenance and remarkable as a candidate gene to induce leukemogenesis. Recent reports revealed that high PRDM16 expression was a significant marker to predict poor prognosis in pediatric AML. However, the significance of PRDM16 expression is unclear in adult AML patients. Methods A total of 151 adult AML patients (136 patients with de novo AML and 15 patients with relapsed AML) were analyzed. They were referred to our institution between 2004 and 2015 and our collaborating center between 1996 and 2013. The median length of follow-up for censored patients was 30.6 months. Quantitative RT-PCR analysis was performed using the 7900HT Fast Real Time PCR System with TaqMan Gene Expression Master Mix and TaqMan Gene Expression Assay. In addition to PRDM16, ABL1 was also evaluated as a control gene. We investigated the correlations between PRDM16 gene expression and other genetic alterations, such as FLT3-ITD, NPM1, and DNMT3A, and clarified the prognostic impact of PRDM16 expression in adult AML patients. Mutation analyses were performed by direct sequence analysis, Mutation Biased PCR, and the next-generation sequencer Ion PGM. Results PRDM16 overexpression was identified in 29% (44/151) of adult AML patients. High PRDM16 expression correlated with higher white blood cell counts in peripheral blood and higher blast ratio in bone marrow at diagnosis; higher coincidence of mutation in NPM1 (P = 0.003) and DNMT3A (P = 0.009); and lower coincidence of t(8;21) (P = 0.010), low-risk group (P = 0.008), and mutation in BCOR (P = 0.049). Conversely, there were no significant differences in age at diagnosis and sex distribution. Patients with high PRDM16 expression tended to be low frequency in M2 (P = 0.081) subtype, and the remaining subtype had no significant differences between high and low PRDM16 expression. Remarkably, PRDM16 overexpression patients were frequently observed in non-complete remission (55.8% vs. 26.3%, P = 0.001). Patients with high PRDM16 expression tended to have a cumulative incidence of FLT3-ITD (37% vs. 21%, P = 0.089) and MLL-PTD (15% vs. 5%, P = 0.121). We analyzed the prognosis of 139 patients who were traceable. The overall survival (OS) and median survival time (MST) of patients with high PRDM16 expression were significantly worse than those of patients with low expression (5-year OS, 17% vs. 32%; MST, 287 days vs. 673 days; P = 0.004). This trend was also significant among patients aged <65 years (5-year OS, 25% vs. 48%; MST, 361 days vs. 1565 days, P = 0.013). Moreover, high PRDM16 expression was a significant prognostic factor for FLT3-ITD negative patients aged < 65 years in the intermediate cytogenetic risk group (5-year OS, 29% vs. 58%; MST, 215 days vs. undefined; P = 0.032). Conclusions We investigated the correlations among PRDM16 expression, clinical features, and other genetic alterations to reveal clinical and prognostic significance. High PRDM16 expression was independently associated with non-CR and adverse outcomes in adult AML patients, as well as pediatric AML patients. Our finding indicated that the same pathogenesis may exist in both adult and pediatric AML patients with respect to PRDM16 expression, and measuring PRDM16 expression was a powerful tool to predict the prognosis of adult AML patients. Disclosures Inokuchi: Bristol-Myers Squibb: Honoraria, Research Funding; Novartis: Honoraria; Celgene: Honoraria; Pfizer: Honoraria.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 415-415 ◽  
Author(s):  
Verena I. Gaidzik ◽  
Richard F. Schlenk ◽  
Peter Paschka ◽  
Anja Stölzle ◽  
Andrea Corbacioglu ◽  
...  

Abstract Abstract 415 Background: Alteration of DNA methylation, a hallmark of epigenetic modification, is currently discussed as one important pathomechanism in leukemogenesis. Using a next-generation sequencing approach, a frameshift mutation of the gene encoding the DNA methyltransferase (DNMT3A) in an acute myeloid leukemia (AML) case was identified. DNMT3A catalyses the addition of a methyl group to the cytosine residue of CpG dinucleotides, thereby affecting promoter methylation status and gene expression. Subsequent sequencing analysis in an independent cohort of 288 AML patients (pts) revealed DNMT3A mutations (DNMT3Amut) in 22% of the pts; mutations were associated with intermediate-risk cytogenetics and poor outcome. Aims: To evaluate frequency and clinical impact of DNMT3Amut in pts with AML aged 18 to 61 years who were treated within AMLSG treatment trials AML HD98A (Schlenk et al., J Clin Oncol 2010;28:4642–8) and AMLSG 07–04 (NCT00151242). Methods: DNMT3A mutation analysis was performed in 1218 AML (HD98A, n=685; AMLSG 07–04, n=533; de novo AML, n=1102; s-AML, n=45; t-AML, n=69) using a DNA-based PCR assay for all coding exons (1 to 23) followed by direct sequencing. The median follow-up was 5.06 years. Results: DNMT3A mut were found with an overall frequency of 19.6% (239/1218); 189 mutations were located in the MTase domain clustering at amino acid R882 (79%). All but one mutation were heterozygous; only 4 cases had two mutations. DNMT3A sequence alterations included 17 frameshift, 4 nonsense, and 222 missense mutations. DNMT3A mut pts were significantly older (P=.01), more frequently females (P=.001), had higher white blood cell and platelet counts (both P<.0001), and higher bone marrow blasts percentage (P=.001). DNMT3Amut were associated with cytogenetically-normal AML (CN-AML, P<.0001), while DNMT3Amut were rare in favorable and adverse-risk karyotypes (P<.0001). Correlations with other molecular markers (NPM1, CEBPA, FLT3, IDH1/2, TET2, ASXL1) revealed a significant association with NPM1 (P<.0001), FLT3-ITD (P<.0001), and IDH1/2 (IDH1R132, P<.0001; IDH2R140, P=.0003; IDH2R172, P=.03) mutations, while co-occurrence of CEBPA (P=.02) and ASXL1 (P=.02) mutations was less frequent. DNMT3A mutational status did not impact complete remission (CR) rate, event-free (EFS) and relapse-free survival (RFS), neither in the whole cohort (P=.09, P=.98, P=.11; respectively) nor in the subgroup of CN-AML (P=.39, P=.79, P=.19, respectively). DNMT3Amut had a negative impact on overall survival (OS) in trend in the whole cohort (P=.07) and significantly in CN-AML (P=.02). In multivariable analyses, DNMT3Amut were in trend associated with a negative prognostic impact on OS (hazard ratio, 1.24; P=.06). In addition, we performed subgroup analyses according to (1) the NPM1 mutational status, and (2) the molecular risk groups of CN-AML (as defined by the European LeukemiaNet classification). DNMT3Amut did not impact OS in NPM1-mutated patients in the whole cohort as well as in CN-AML (P=.34; P=.22; respectively), while in NPM1-wildtype patients DNMT3Amut were associated with inferior OS in both, the whole cohort and in CN-AML (P=.001; P=.005; respectively). In molecular unfavorable CN-AML (NPM1-wildtype with or without FLT3-ITD, NPM1-mutated with FLT3-ITD, CEBPA-wildtype), DNMT3Amut were significantly associated with worse OS (P=.002) compared with DNMT3A-wildtype pts, even outweighing FLT3-ITD as an unfavorable prognostic marker. There was no effect of DNMT3Amut in molecular favorable-risk CN-AML. Conclusions: DNMT3A mutations are confirmed as frequent genetic aberrations in AML, associated with normal karyotype, NPM1, FLT3-ITD, and IDH1/2 mutations. DNMT3Amut predicts for inferior outcome in molecularly-defined subsets of AML, that is, NPM1-wildtype AML and molecular unfavorable CN-AML. As a single marker, DNMT3Amut only had a moderate effect on outcome. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3769-3769
Author(s):  
Guopan Yu ◽  
Fan Yi Meng ◽  
Ling Jiang ◽  
Changxin Yin ◽  
Zhixiang Wang ◽  
...  

Abstract Amyloid precursor protein (APP) has been reported to be highly expressed in AML1/ETO positive acute myeloid leukemia (AML1/ETO+ AML), and we found it express even higher in those with extramedullary infiltration in our previous study. But it’s still unknown what role APP plays and how it works in AML1/ETO+ AML. This study was designed to investigate the effect of APP gene on the prognosis and its molecular mechanism of extramedullary infiltration in the patients with AML1/ETO+ AML. 44 cases of AML1/ETO+ AML patients with median age of 29 years old, who were admitted to our hospital from February, 2006 to February, 2012 and made the diagnosis according to WHO2008 diagnosis standard, and had completed conventional induction, consolidation and intensive therapy, were investigated in this study. They were divided into high expression group (n=22) and low one (n=22) according to APP mRNA median expression level from bone marrow cells before the first chemotherapy by QRT-PCR. Some of bone marrow samples were checked by Western Blot, and 5 biopsy specimens from extramedullary infiltration were tested by APP antibody immunohistochemistry staining. Incidence of extramedullary leukemia (EML), complete response (CR), overall survival (OS), and recurrence free survival (RFS) was differentiated between the two groups. Differences of cell ultrastructure, migration, proliferation, apoptosis and expression of ERK, MMP-2, MMP-9 and CXCR4 were studied on Kasumi-1 cell line between wild, negative control (NC) and si-APP group in which the expression levels of APP gene were down regulated with application of siRNA technology.Çå The incidence of EML was significantly different (45.5% versus 9.1%) in the two groups (P=0.007) and it was positively correlative with the expression levels of APP mRNA (rp=0.435, P=0.004). Extramedullary infiltration site also showed high expression of APP by immunohistochemistry, while the control group was negative. Not only CR rate after two courses of chemotherapy, but also OS and RFS with median follow-up of 28(4-70) months, of high expression group was all significantly lower than that of low expression group (Table 1). Compared with the wild and NC group, cell apoptosis of si-APP group was significantly increased (12.33 ± 0.75 vs 19.80 ± 1.51, P=0.000); the number of microvilli on the surface of the cell membrane significantly reduced; the ability of the cell migration by Tanswell chamber migration assay significantly decreased (P=0.004); and expression of P-ERK, c-MYC, MMP-2 decreased significantly which was confirmed by ERK and c-MYC blocker treatment (Figure 1). In sum, incidence of EML is significantly higher and the prognosis is poor in the patients with AML1/ETO+ AML with high expression of APP gene. We first describe that APP gene may mediate AML1/ETO+ leukemia cells in the development of extramedullary infiltration by up-regulation of the ERK/MMP-2 pathway. Disclosures: No relevant conflicts of interest to declare.


2018 ◽  
Vol 1 (6) ◽  
pp. e201800153 ◽  
Author(s):  
Tanja Božić ◽  
Joana Frobel ◽  
Annamarija Raic ◽  
Fabio Ticconi ◽  
Chao-Chung Kuo ◽  
...  

De novo DNA methyltransferase 3A (DNMT3A) plays pivotal roles in hematopoietic differentiation. In this study, we followed the hypothesis that alternative splicing ofDNMT3Ahas characteristic epigenetic and functional sequels. SpecificDNMT3Atranscripts were either down-regulated or overexpressed in human hematopoietic stem and progenitor cells, and this resulted in complementary and transcript-specific DNA methylation and gene expression changes. Functional analysis indicated that, particularly, transcript 2 (coding for DNMT3A2) activates proliferation and induces loss of a primitive immunophenotype, whereas transcript 4 interferes with colony formation of the erythroid lineage. Notably, in acute myeloid leukemia expression of transcript 2 correlates with its in vitro DNA methylation and gene expression signatures and is associated with overall survival, indicating thatDNMT3Avariants also affect malignancies. Our results demonstrate that specificDNMT3Avariants have a distinct epigenetic and functional impact. Particularly, DNMT3A2 triggers hematopoietic differentiation and the corresponding signatures are reflected in acute myeloid leukemia.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 24-24
Author(s):  
Anneke D. van Dijk ◽  
Fieke W Hoff ◽  
Yihua Qiu ◽  
Eveline S. de Bont ◽  
Sophia W.M. Bruggeman ◽  
...  

Background: Acute myeloid leukemia (AML) is an epigenetically heterogeneous disease. The intensity of treatment is currently guided by cytogenetic and molecular genetic risk classifications; however these incompletely predict outcomes, requiring additional information for more accurate predictions. We aimed to identify potential prognostic implications of epigenetic modification of histone proteins, with a focus of H3K27 methylation in relation to mutations in chromatin, splicing and transcriptional regulators. Material and methods: Histone methylation mark expressions were evaluated in a cohort of 241 AML bone marrow (BM) and peripheral blood (PB) samples from patients admitted at the MD Anderson Cancer Center relative to their expression in CD34+ BM derived samples from healthy donors. Simultaneous analysis of 230 proteins was performed using the reverse phase protein array - a high-throughput, quantitative proteomic platform that enables identification of aberrant expressed proteins and the pathways they act in. Additional mutational analysis was performed on 65 BM samples. Results:H3K27Me3 was significantly lower in both BM and PB leukemic-derived samples compared to their expression in normal BM (figure 1A). A greater loss of H3K27Me3 associated with increased proliferative potential and shorter overall survival (OS) in the whole patient population (n=241, HR=0.64, 95% CI=0.47-0.87, p&lt;0.01), as well as in subsets, e.g. cytogenetically normal AML (n=110, HR=0.62, 95% CI=0.40-0.97, p=0.03). To study the prognostic impact of H3K27Me3 in the context of cytogenetic aberrations and mutations, multivariate cox regression analysis was performed which identified H3K27Me3 level as an independent favorable prognostic factor in all (HR=0.74, 95%CI=0.57-0.95, p=0.02) as well as in P53 mutated AML (n=54, HR=0.48, 95%CI=0.26-0.87, p=0.02). A total of 78 AML patients had molecular data available for the major methylation affecting genes, i.e. IDH1, IDH2, DNMT3A and TET2. The level of H3K27Me3 was not prognostic in patients without any DNA methylation affecting mutation present, but patients with at least one mutation in any of these had better outcome when H3K27Me3 levels were high (highest tertile, figure 1A) compared to those with lower levels (median OS 7.1 vs. 24.1 months, HR=0.42, 95% CI=0.21-0.83, p=0.01, figure 1B). Mutations in U2AF1 and SRSF2 affect the spliceosome and are frequently found in antecedent hematological disorders (AHD), as well as are mutations in chromatin regulating genes ASXL1 and BCOR. We observed significant decreased H3K27Me3 in patients with these mutations corresponding with observed lower levels of H3K27Me3 in patients with AHD than those without (p=0.035). BCOR, SRSF2, U2AF1 and ASXL1 mutations confer poor prognosis in myeloid malignancies, however, in our cohort of 65 sequenced AML patients; not individual or a combination of these mutations were independent prognostic factors, but the degree of H3K27Me3 in these patients (HR= 0.49, 95% CI=0.25-0.95, p=0.03). To recognize dysregulated pathways in AML patients with the identified loss of H3K27Me3, we examined correlations of H3K27Me3 with the other 229 proteins on the array. H3K27Me3 is catalyzed by the polycomb group protein EZH2 and is linked to transcriptional repression via the formation of heterochromatin regions. To identify upregulated proteins and pathways upon the loss of H3K27Me3, we focused on significant negatively correlated proteins with H3K27Me3 leading us to the identification of 20 total and 6 phospho-proteins that showed increased expression upon decreased H3K27Me3. Functional enrichment analysis of this protein set revealed an upregulated anti-apoptotic phenotype. Conclusion:This study shows that proteomic profiling of epigenetic modifications on the histone level have clinical implications in AML and support the idea that epigenetic patterns contribute to a more accurate picture of the leukemic state complementing cytogenetic and molecular genetic subgrouping. Figure 1. A) Lower H3K27Me3 in BM and PB derived AML samples compared to normal CD34+. **** represents p&lt;0.0001, ns = not significant. B) Overall survival probability in AML patients with any DNA methylation affecting mutation (i.e. IDH1/2, DNMT3A, TET2, n=53) according to H3K27Me3 low (blue) and high (orange) status. Figure 1 Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (22) ◽  
pp. 5905-5913 ◽  
Author(s):  
Anna Staffas ◽  
Meena Kanduri ◽  
Randi Hovland ◽  
Richard Rosenquist ◽  
Hans Beier Ommen ◽  
...  

Abstract Mutation status of FLT3, NPM1, CEBPA, and WT1 genes and gene expression levels of ERG, MN1, BAALC, FLT3, and WT1 have been identified as possible prognostic markers in acute myeloid leukemia (AML). We have performed a thorough prognostic evaluation of these genetic markers in patients with pediatric AML enrolled in the Nordic Society of Pediatric Hematology and Oncology (NOPHO) 1993 or NOPHO 2004 protocols. Mutation status and expression levels were analyzed in 185 and 149 patients, respectively. Presence of FLT3-internal tandem duplication (ITD) was associated with significantly inferior event-free survival (EFS), whereas presence of an NPM1 mutation in the absence of FLT3-ITD correlated with significantly improved EFS. Furthermore, high levels of ERG and BAALC transcripts were associated with inferior EFS. No significant correlation with survival was seen for mutations in CEBPA and WT1 or with gene expression levels of MN1, FLT3, and WT1. In multivariate analysis, the presence of FLT3-ITD and high BAALC expression were identified as independent prognostic markers of inferior EFS. We conclude that analysis of the mutational status of FLT3 and NPM1 at diagnosis is important for prognostic stratification of patients with pediatric AML and that determination of the BAALC gene expression level can add valuable information.


2015 ◽  
Vol 94 (10) ◽  
pp. 1631-1638 ◽  
Author(s):  
Mi Hyun Bae ◽  
Sung-Hee Oh ◽  
Chan-Jeoung Park ◽  
Bo-Ra Lee ◽  
Young Jin Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document