An optimized homologous recombination deficiency (HRD) algorithm ASGAD for predicting PARP inhibitor response in ovarian cancer patient.

2019 ◽  
Vol 37 (15_suppl) ◽  
pp. e17077-e17077
Author(s):  
Yang Jiao ◽  
Dong Ju Chen ◽  
Bo Liu ◽  
Pei Meng ◽  
Lei Sun ◽  
...  

e17077 Background: Homologous recombination deficiency (HRD) results less efficient and error-prone DNA double strand break (DSB) repair, thus causes genomic in stability and impacts on cancer susceptibility to Poly‐(ADP‐Ribose)‐Polymerase (PARP) inhibitors. Evaluating HRD level in gynecologic cancer patients is becoming far more important and influential, so far, there is no standard method to be used in clinical. Methods: Here, we optimized an HRD score algorithm, termed as ASGAD, which combines three classic factors, including loss of heterozygosity score (LOH), telomeric allelic imbalance score (TAI), large-scale state transition score (LST), along with tumor ploidy to predict PARP inhibitor response in ovarian cancer patient. Results: Traditional global optimization strategy for purity and ploidy calculation is usually sensitive to initial values and may lead to incorrect convergences. Here we designed a two-step optimization manner to avoid this problem. Firstly, a density-based clustering algorithm was applied on BAF and CN, and the genotype was assigned to the most legible cluster. Then the rectified BAF and CN was calculated and used to find the maximum likelihood genotype of each segment. The segmentation processed was also improved by applying a series of statistical test to merge similar adjacent segments. The accuracy of allele-specific copy-number detection is significantly improved vie this algorithm, deriving stable and reliable HRD scores especially on aneuploid and hyperploid tumor cases. In this study, we assessed ASGAD algorithm in almost 150 ovarian cancer patient samples, who had treated with platinum effectively. BRCA1/2 deficient was defined as either one deleterious mutation in BRCA1/2, with LOH in the wild type copy or two deleterious mutations in the same gene. The results showed that the 19/23 BRCA1/2 deficient samples are also HRD-high, giving the sensitivity of 82.61%. Besides, we identify 58 HRD-high samples with intact BRCA1/2, who might benefit from PARP inhibitors, by the ASGAD algorithm. Interestingly, we analyzed 4 HRD-high samples by using whole-exome sequencing (WES), and found other HR genes mutations in these samples, including PARP4, FANCM, MSH2, MSH6, ATR, POLD1. Conclusions: The expanded use of PARP inhibitors in HRD tumors using the ASGAD algorithm requires more validation.

2019 ◽  
Vol 8 (4) ◽  
pp. 435 ◽  
Author(s):  
Man Keung ◽  
Yanyuan Wu ◽  
Jaydutt Vadgama

Poly (ADP-ribose) polymerases (PARPs) play an important role in various cellular processes, such as replication, recombination, chromatin remodeling, and DNA repair. Emphasizing PARP’s role in facilitating DNA repair, the PARP pathway has been a target for cancer researchers in developing compounds which selectively target cancer cells and increase sensitivity of cancer cells to other anticancer agents, but which also leave normal cells unaffected. Since certain tumors (BRCA1/2 mutants) have deficient homologous recombination repair pathways, they depend on PARP-mediated base excision repair for survival. Thus, inhibition of PARP is a promising strategy to selectively kill cancer cells by inactivating complementary DNA repair pathways. Although PARP inhibitor therapy has predominantly targeted BRCA-mutated cancers, this review also highlights the growing conversation around PARP inhibitor treatment for non-BRCA-mutant tumors, those which exhibit BRCAness and homologous recombination deficiency. We provide an update on the field’s progress by considering PARP inhibitor mechanisms, predictive biomarkers, and clinical trials of PARP inhibitors in development. Bringing light to these findings would provide a basis for expanding the use of PARP inhibitors beyond BRCA-mutant breast tumors.


2021 ◽  
Author(s):  
Dongju Chen ◽  
Minghui Shao ◽  
Pei Meng ◽  
Chunli Wang ◽  
Qi Li ◽  
...  

The gain or loss of large chromosomal regions or even whole chromosomes is termed as genomic scarring and can be observed as copy number variations resulting from the failure of DNA damage repair. Aneuploidy is a common event in cancers, and it may lead to more copy number variation, but not caused by homologous recombination deficiency (HRD). In this study, a new algorithm called Genomic Scar Analysis (GSA) has developed and validated, calculating HRD score, combined with loss of heterozygosity (LOH), telomeric allelic imbalance (TAI), and large-scale state transition (LST) scores. The two critical submodules were tree recursion (TR) segmentation and filtering, and the estimation and correction of the tumor purity and ploidy. Then, this study evaluated the rationality of segmentation and genotype identification by the GSA algorithm and compared with other two algorithms, PureCN and ASCAT, found that the segmentation result of GSA algorithm was more logical. In addition, the results indicated that the GSA algorithm had an excellent predictive effect on tumor purity (correlation coefficient R2 were 0.9813 and 0.9812, respectively, in tumor and cell line diluted samples), and more stable ploidy predictors, if the tumor purity was more than 20%. Furtherly, this study evaluated the HRD scores and BRCA1/2 deficiency status of 195 clinical samples, and the results indicated that the accuracy was 0.98 (comparing with Affymetrix OncoScan assay) and the sensitivity was 91.9% (comparing with BRCA1/2 deficiency status), both were well-behaved. Finally, HRD scores and 16 genes mutations (TP53 and 15 HRR pathway genes) were analyzed in 17 cell lines, the results showed that there was higher frequency in HRR pathway genes in high HRD score samples, but it still need more data on the efficacy of PARP inhibitors or platinum-based chemotherapy to validate the accuracy of GSA algorithm in the real-world data.


Diagnostics ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 55 ◽  
Author(s):  
Boussios ◽  
Karathanasi ◽  
Cooke ◽  
Neille ◽  
Sadauskaite ◽  
...  

Poly (ADP-ribose) polymerase (PARP) inhibitors are a novel class of therapeutic agents that target tumors with deficiencies in the homologous recombination DNA repair pathway. Genomic instability characterizes high-grade serous ovarian cancer (HGSOC), with one half of all tumors displaying defects in the important DNA repair pathway of homologous recombination. Early studies have shown significant efficacy for PARP inhibitors in patients with germline breast related cancer antigens 1 and 2 (BRCA1/2) mutations. It has also become evident that BRCA wild-type patients with other defects in the homologous recombination repair pathway benefit from this treatment. Companion homologous recombination deficiency (HRD) scores are being developed to guide the selection of patients that are most likely to benefit from PARP inhibition. The choice of which PARP inhibitor is mainly based upon the number of prior therapies and the presence of a BRCA mutation or HRD. The identification of patients most likely to benefit from PARP inhibitor therapy in view of HRD and other biomarker assessments is still challenging. The aim of this review is to describe the current evidence for PARP inhibitors in ovarian cancer, their mechanism of action, and the outstanding issues, including the rate of long-term toxicities and the evolution of resistance.


2016 ◽  
Vol 4 (2) ◽  
pp. 17-22
Author(s):  
Ilary Ruscito ◽  
Susana Banerjee

It has been well established that failure in the homologous recombination repair (HRR) mechanism for DNA double strand repair causes genomic instability and increases the risk for cell transformation. Mutations in BRCA1 and BRCA2 are currently known to be the most frequent responsible for homologous recombination deficiency (HRD) but HRD can occur through other processes including mutations and epigenetic aberration of HRD-related genes and the indirect interaction of BRCA proteins with other proteins involved in the DNA repair. Current efforts in this field are concentrating in identifying an HRD molecular signature able to predict response to chemotherapy and PARP inhibitors, thus allowing to extend novel targeted treatments beyond germline BRCA mutated ovarian cancer patients. The aim of this brief review is to summarize the current evidence regarding HRD beyond germline BRCA mutations and therapeutic approaches.


2016 ◽  
Vol 34 (15_suppl) ◽  
pp. e17045-e17045 ◽  
Author(s):  
Panagiotis Konstantinopoulos ◽  
Sangeetha Palakurthi ◽  
Qing Zeng ◽  
Shan Zhou ◽  
Joyce F. Liu ◽  
...  

2019 ◽  
Vol 49 (8) ◽  
pp. 703-707 ◽  
Author(s):  
Koji Matsumoto ◽  
Meiko Nishimura ◽  
Takuma Onoe ◽  
Hideki Sakai ◽  
Yusaku Urakawa ◽  
...  

Abstract After a brief summary of the current status of poly-ADP ribose polymerase (PARP) inhibitors for ovarian cancer, we summarize the current status of PARP inhibitors for BRCA wild type ovarian cancer, especially regarding gene alterations other than BRCA, homologous recombination deficiency (HRD), and combinations. Discussion of gene alterations other than BRCA include the results of multiple gene panels studying homologous recombination repair deficiency genes and cancer susceptibility genes, and influences of these alterations on efficacy of PARP inhibitors and cancer susceptibility. Discussions of HRD include the results of phase three trials using HRD assay, the definition of HRD assays, and the latest assays. Discussions of combinations include early phase trial results and ongoing trials combining PARP inhibitors with immune checkpoint inhibitors, anti-angiogenic agents, and triplets.


2019 ◽  
Vol 05 (01) ◽  
pp. 01-18
Author(s):  
Vikas Goswami ◽  
Venkata Pradeep Babu Koyyala ◽  
Sumit Goyal ◽  
Manish Sharma ◽  
Varun Goel ◽  
...  

AbstractPoly (ADP-ribose) polymerase (PARP) inhibitors are a unique class of therapeutic agents that focus on tumors with deficiencies in the homologous recombination DNA repair mechanism. Genomic instability outlines high-grade serous ovarian cancer, with 50% of all tumors displaying defects in the important DNA repair mechanism of homologous recombination. Earlier research studies have demonstrated considerable efficiency for PARP inhibitors in patients with germ line breast-related cancer antigens 1 and 2 (BRCA-1/BRCA-2) mutations. It has also been observed that BRCA wild-type patients with other defects in the homologous recombination repair mechanism get benefited from this therapy. Companion homologous recombination deficiency (HRD) scores are being developed to guide the selection of patients that are most likely to benefit from PARP inhibition. The selection of PARP inhibitor is mainly dependent upon the number of prior therapies and the presence of a BRCA mutation or HRD. The identification of cases which are most likely to get benefited from PARP inhibitor therapy in view of HRD and other biomarker assessments is still challenging. The purpose of this review is to focus and describe the current evidences for PARP inhibitors in ovarian malignancy, their mechanism of action, and the outstanding issues, including the rate of long-term toxicities and the evolving resistance.


2021 ◽  
Vol 11 (7) ◽  
pp. 612
Author(s):  
Svenja Wagener-Ryczek ◽  
Sabine Merkelbach-Bruse ◽  
Janna Siemanowski

DNA double-strand breaks foster tumorigenesis and cell death. Two distinct mechanisms can be activated by the cell for DNA repair: the accurate mechanism of homologous recombination repair or the error-prone non-homologous end joining. Homologous Recombination Deficiency (HRD) is associated with sensitivity towards PARP inhibitors (PARPi) and its determination is used as a biomarker for therapy decision making. Nevertheless, the biology of HRD is rather complex and the application, as well as the benefit of the different HRD biomarker assays, is controversial. Acquiring knowledge of the underlying molecular mechanisms is the main prerequisite for integration of new biomarker tests. This study presents an overview of the major DNA repair mechanisms and defines the concepts of HRR, HRD and BRCAness. Moreover, currently available biomarker assays are described and discussed with respect to their application for routine clinical diagnostics. Since patient stratification for efficient PARP inhibitor therapy requires determination of the BRCA mutation status and genomic instability, both should be established comprehensively. For this purpose, a broad spectrum of distinct assays to determine such combined HRD scores is already available. Nevertheless, all tests require careful validation using clinical samples to meet the criteria for their establishment in clinical testing.


Sign in / Sign up

Export Citation Format

Share Document