scholarly journals PARP Inhibitors in Ovarian Cancer: The Route to “Ithaca”

Diagnostics ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 55 ◽  
Author(s):  
Boussios ◽  
Karathanasi ◽  
Cooke ◽  
Neille ◽  
Sadauskaite ◽  
...  

Poly (ADP-ribose) polymerase (PARP) inhibitors are a novel class of therapeutic agents that target tumors with deficiencies in the homologous recombination DNA repair pathway. Genomic instability characterizes high-grade serous ovarian cancer (HGSOC), with one half of all tumors displaying defects in the important DNA repair pathway of homologous recombination. Early studies have shown significant efficacy for PARP inhibitors in patients with germline breast related cancer antigens 1 and 2 (BRCA1/2) mutations. It has also become evident that BRCA wild-type patients with other defects in the homologous recombination repair pathway benefit from this treatment. Companion homologous recombination deficiency (HRD) scores are being developed to guide the selection of patients that are most likely to benefit from PARP inhibition. The choice of which PARP inhibitor is mainly based upon the number of prior therapies and the presence of a BRCA mutation or HRD. The identification of patients most likely to benefit from PARP inhibitor therapy in view of HRD and other biomarker assessments is still challenging. The aim of this review is to describe the current evidence for PARP inhibitors in ovarian cancer, their mechanism of action, and the outstanding issues, including the rate of long-term toxicities and the evolution of resistance.

2019 ◽  
Vol 05 (01) ◽  
pp. 01-18
Author(s):  
Vikas Goswami ◽  
Venkata Pradeep Babu Koyyala ◽  
Sumit Goyal ◽  
Manish Sharma ◽  
Varun Goel ◽  
...  

AbstractPoly (ADP-ribose) polymerase (PARP) inhibitors are a unique class of therapeutic agents that focus on tumors with deficiencies in the homologous recombination DNA repair mechanism. Genomic instability outlines high-grade serous ovarian cancer, with 50% of all tumors displaying defects in the important DNA repair mechanism of homologous recombination. Earlier research studies have demonstrated considerable efficiency for PARP inhibitors in patients with germ line breast-related cancer antigens 1 and 2 (BRCA-1/BRCA-2) mutations. It has also been observed that BRCA wild-type patients with other defects in the homologous recombination repair mechanism get benefited from this therapy. Companion homologous recombination deficiency (HRD) scores are being developed to guide the selection of patients that are most likely to benefit from PARP inhibition. The selection of PARP inhibitor is mainly dependent upon the number of prior therapies and the presence of a BRCA mutation or HRD. The identification of cases which are most likely to get benefited from PARP inhibitor therapy in view of HRD and other biomarker assessments is still challenging. The purpose of this review is to focus and describe the current evidences for PARP inhibitors in ovarian malignancy, their mechanism of action, and the outstanding issues, including the rate of long-term toxicities and the evolving resistance.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Daniel R. Principe ◽  
Matthew Narbutis ◽  
Regina Koch ◽  
Ajay Rana

AbstractPARP inhibitors have shown remarkable efficacy in the clinical management of several BRCA-mutated tumors. This approach is based on the long-standing hypothesis that PARP inhibition will impair the repair of single stranded breaks, causing synthetic lethality in tumors with loss of high-fidelity double-strand break homologous recombination. While this is now well accepted and has been the basis of several successful clinical trials, emerging evidence strongly suggests that mutation to several additional genes involved in homologous recombination may also have predictive value for PARP inhibitors. While this notion is supported by early clinical evidence, the mutation frequencies of these and other functionally related genes are largely unknown, particularly in cancers not classically associated with homologous recombination deficiency. We therefore evaluated the mutation status of 22 genes associated with the homologous recombination DNA repair pathway or PARP inhibitor sensitivity, first in a pan-cancer cohort of 55,586 patients, followed by a more focused analysis in The Cancer Genome Atlas cohort of 12,153 patients. In both groups we observed high rates of mutations in a variety of HR-associated genes largely unexplored in the setting of PARP inhibition, many of which were associated also with poor clinical outcomes. We then extended our study to determine which mutations have a known oncogenic role, as well as similar to known oncogenic mutations that may have a similar phenotype. Finally, we explored the individual cancer histologies in which these genomic alterations are most frequent. We concluded that the rates of deleterious mutations affecting genes associated with the homologous recombination pathway may be underrepresented in a wide range of human cancers, and several of these genes warrant further and more focused investigation, particularly in the setting of PARP inhibition and HR deficiency.


Author(s):  
Rebecca S. Kristeleit ◽  
Rowan E. Miller ◽  
Elise C. Kohn

The presence of a BRCA mutation, somatic or germline, is now established as a standard of care for selecting patients with ovarian cancer for treatment with a PARP inhibitor. During the clinical development of the PARP inhibitor class of agents, a subset of women without BRCA mutations were shown to respond to these drugs (termed “ BRCAness”). It was hypothesized that other genetic abnormalities causing a homologous recombinant deficiency (HRD) were sensitizing the BRCA wild-type cancers to PARP inhibition. The molecular basis for these other causes of HRD are being defined. They include individual gene defects (e.g., RAD51 mutation, CHEK2 mutation), homozygous somatic loss, and whole genome properties such as genomic scarring. Testing this knowledge is possible when selecting patients to receive molecular therapy targeting DNA repair, not only for patients with ovarian cancer but also endometrial and cervical cancers. The validity of HRD assays and multiple gene sequencing panels to select a broader population of patients for treatment with PARP inhibitor therapy is under evaluation. Other non-HRD targets for exploiting DNA repair defects in gynecologic cancers include mismatch repair (MMR), checkpoint signaling, and nonhomologous end-joining (NHEJ) DNA repair. This article describes recent evidence supporting strategies in addition to BRCA mutation for selecting patients for treatment with PARP inhibitor therapy. Additionally, the challenges and opportunities of exploiting DNA repair pathways other than homologous recombination for molecular therapy in gynecologic cancers is discussed.


2021 ◽  
Vol 12 (1) ◽  
pp. 82-104
Author(s):  
Sofia Levva ◽  
Aglaia Skolariki ◽  
Eleni Sogka ◽  
Alexandros Bokas ◽  
Avraam Assi ◽  
...  

Abstract The field of ovarian cancer has been revolutionized with the use of poly (ADP-ribose) polymerase (PARP) inhibitors, which present greater inhibition effect in epithelial subtype due to high rates of homologous recombination deficiency. PARP inhibition exploits this cancer pitfall by disrupting DNA repair, leading to genomic instability and apoptosis. Three PARP inhibitors (olaparib, niraparib, and rucaparib) are now approved for use in women with epithelial ovarian cancer, while others are under development. Among women with BRCA1/2 mutations, maintenance PARP therapy has led to a nearly fourfold prolongation of PFS, while those without BRCA1/2 mutations experience an approximately twofold increase in PFS. Differences in trial design, patient selection and primary analysis population affect the conclusions on PARP inhibitors. Limited OS data have been published and there is also limited experience regarding long-term safety. With regard to toxicity profile, there are no differences in serious adverse events between the experimental and control groups. However, combining adverse event data from maintenance phases, a trend towards more events in the experimental group, compared with controls, has been shown. The mechanisms of PARP-inhibitor resistance include restoration of HR through reversion mutations in HR genes, leading to resumed HR function. Other mechanisms that sustain sufficient DNA repair are discussed as well. PARP inhibitors play a pivotal role in the management of ovarian cancer, affecting the future treatment choices. Defining exactly which patients will benefit from them is a challenge and the need for HRD testing to define ‘BRCA-ness’ will add additional costs to treatment.


Diagnostics ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 87 ◽  
Author(s):  
Stergios Boussios ◽  
Peeter Karihtala ◽  
Michele Moschetta ◽  
Afroditi Karathanasi ◽  
Agne Sadauskaite ◽  
...  

Poly (ADP-ribose) polymerase (PARP) inhibitors are the first clinically approved drugs designed to exploit synthetic lethality, and were first introduced as a cancer-targeting strategy in 2005. They have led to a major change in the treatment of advanced ovarian cancer, and altered the natural history of a disease with extreme genetic complexity and defective DNA repair via homologous recombination (HR) pathway. Furthermore, additional mechanisms apart from breast related cancer antigens 1 and 2 (BRCA1/2) mutations can also result in HR pathway alterations and consequently lead to a clinical benefit from PARP inhibitors. Novel combinations of PARP inhibitors with other anticancer therapies are challenging, and better understanding of PARP biology, DNA repair mechanisms, and PARP inhibitor mechanisms of action is crucial. It seems that PARP inhibitor and biologic agent combinations appear well tolerated and clinically effective in both BRCA-mutated and wild-type cancers. They target differing aberrant and exploitable pathways in ovarian cancer, and may induce greater DNA damage and HR deficiency. The input of immunotherapy in ovarian cancer is based on the observation that immunosuppressive microenvironments can affect tumour growth, metastasis, and even treatment resistance. Several biologic agents have been studied in combination with PARP inhibitors, including inhibitors of vascular endothelial growth factor (VEGF; bevacizumab, cediranib), and PD-1 or PD-L1 (durvalumab, pembrolizumab, nivolumab), anti-CTLA4 monoclonal antibodies (tremelimumab), mTOR-(vistusertib), AKT-(capivasertib), and PI3K inhibitors (buparlisib, alpelisib), as well as MEK 1/2, and WEE1 inhibitors (selumetinib and adavosertib, respectively). Olaparib and veliparib have also been combined with chemotherapy with the rationale of disrupting base excision repair via PARP inhibition. Olaparib has been investigated with carboplatin and paclitaxel, whereas veliparib has been tested additionally in combination with temozolomide vs. pegylated liposomal doxorubicin, as well as with oral cyclophosphamide, and topoisomerase inhibitors. However, overlapping myelosuppression observed with PARP inhibitor and chemotherapy combinations requires further investigation with dose escalation studies. In this review, we discuss multiple clinical trials that are underway examining the antitumor activity of such combination strategies.


2021 ◽  
Vol 11 (7) ◽  
pp. 612
Author(s):  
Svenja Wagener-Ryczek ◽  
Sabine Merkelbach-Bruse ◽  
Janna Siemanowski

DNA double-strand breaks foster tumorigenesis and cell death. Two distinct mechanisms can be activated by the cell for DNA repair: the accurate mechanism of homologous recombination repair or the error-prone non-homologous end joining. Homologous Recombination Deficiency (HRD) is associated with sensitivity towards PARP inhibitors (PARPi) and its determination is used as a biomarker for therapy decision making. Nevertheless, the biology of HRD is rather complex and the application, as well as the benefit of the different HRD biomarker assays, is controversial. Acquiring knowledge of the underlying molecular mechanisms is the main prerequisite for integration of new biomarker tests. This study presents an overview of the major DNA repair mechanisms and defines the concepts of HRR, HRD and BRCAness. Moreover, currently available biomarker assays are described and discussed with respect to their application for routine clinical diagnostics. Since patient stratification for efficient PARP inhibitor therapy requires determination of the BRCA mutation status and genomic instability, both should be established comprehensively. For this purpose, a broad spectrum of distinct assays to determine such combined HRD scores is already available. Nevertheless, all tests require careful validation using clinical samples to meet the criteria for their establishment in clinical testing.


2019 ◽  
Vol 8 (4) ◽  
pp. 435 ◽  
Author(s):  
Man Keung ◽  
Yanyuan Wu ◽  
Jaydutt Vadgama

Poly (ADP-ribose) polymerases (PARPs) play an important role in various cellular processes, such as replication, recombination, chromatin remodeling, and DNA repair. Emphasizing PARP’s role in facilitating DNA repair, the PARP pathway has been a target for cancer researchers in developing compounds which selectively target cancer cells and increase sensitivity of cancer cells to other anticancer agents, but which also leave normal cells unaffected. Since certain tumors (BRCA1/2 mutants) have deficient homologous recombination repair pathways, they depend on PARP-mediated base excision repair for survival. Thus, inhibition of PARP is a promising strategy to selectively kill cancer cells by inactivating complementary DNA repair pathways. Although PARP inhibitor therapy has predominantly targeted BRCA-mutated cancers, this review also highlights the growing conversation around PARP inhibitor treatment for non-BRCA-mutant tumors, those which exhibit BRCAness and homologous recombination deficiency. We provide an update on the field’s progress by considering PARP inhibitor mechanisms, predictive biomarkers, and clinical trials of PARP inhibitors in development. Bringing light to these findings would provide a basis for expanding the use of PARP inhibitors beyond BRCA-mutant breast tumors.


2018 ◽  
Vol 19 (10) ◽  
pp. 3249 ◽  
Author(s):  
Margarita Romeo ◽  
Juan Pardo ◽  
Anna Martínez-Cardús ◽  
Eva Martínez-Balibrea ◽  
Vanesa Quiroga ◽  
...  

Homologous recombination (HR) is a DNA repair pathway that is deficient in 50% of high-grade serous ovarian carcinomas (HGSOC). Deficient HR (DHR) constitutes a therapeutic opportunity for these patients, thanks to poly (ADP-ribose) polymerases (PARP) inhibitors (PARPi; olaparib, niraparib, and rucaparib are already commercialized). Although initially, PARPi were developed for patients with BRCA1/2 mutations, robust clinical data have shown their benefit in a broader population without DHR. This breakthrough in daily practice has raised several questions that necessitate further research: How can populations that will most benefit from PARPi be selected? At which stage of ovarian cancer should PARPi be used? Which strategies are reasonable to overcome PARPi resistance? In this paper, we present a summary of the literature and discuss the present clinical research involving PARPi (after reviewing ClinicalTrials.gov) from a translational perspective. Research into the functional biomarkers of DHR and clinical trials testing PARPi benefits as first-line setting or rechallenge are currently ongoing. Additionally, in the clinical setting, only secondary restoring mutations of BRCA1/2 have been identified as events inducing resistance to PARPi. The clinical frequency of this and other mechanisms that have been described in preclinics is unknown. It is of great importance to study mechanisms of resistance to PARPi to guide the clinical development of drug combinations.


Sign in / Sign up

Export Citation Format

Share Document