Orvacabtagene autoleucel (orva-cel), a B-cell maturation antigen (BCMA)-directed CAR T cell therapy for patients (pts) with relapsed/refractory multiple myeloma (RRMM): update of the phase 1/2 EVOLVE study (NCT03430011).

2020 ◽  
Vol 38 (15_suppl) ◽  
pp. 8504-8504 ◽  
Author(s):  
Sham Mailankody ◽  
Andrzej J. Jakubowiak ◽  
Myo Htut ◽  
Luciano J. Costa ◽  
Kelvin Lee ◽  
...  

8504 Background: Orva-cel is an investigational, BCMA-directed CAR T cell product with a fully human binder. Over 100 pts have been treated in the EVOLVE phase 1 study. Pts treated at 50 and 150 × 106 CAR+ T cells were previously reported (Mailankody ASH 2018 #957). We now report results of the higher dose levels (DLs) in 51 pts who received orva-cel manufactured using the process intended to support commercial use. Methods: Pts with RRMM who had ≥3 prior regimens, a proteasome inhibitor (PI), an immunomodulatory drug (IMiD), and an anti-CD38 monoclonal antibody (mAb), received orva-cel at 300, 450, and 600 × 106 CAR+ T cells after lymphodepletion with fludarabine/cyclophosphamide. Results: Median pt age was 61 (range, 33–77) y; median time from diagnosis was 7.0 (range, 1.7–23.6) y, with a median of 6 (range, 3–18) prior regimens. Overall, 92% of pts were penta-exposed (2 IMiDs, 2 PIs, and an mAb); 61% of pts received bridging therapy (77% were refractory to bridging therapy). Two pts had dose-limiting toxicities: grade 3 neurological event (NE) for >7 d at 300 × 106 CAR+ T cells and grade 4 neutropenia for >28 d at 450 × 106 CAR+ T cells. Key efficacy and safety outcomes are shown in the Table. Cytokine release syndrome (CRS)/NEs were managed with tocilizumab and/or steroids (78%), anakinra (14%), and/or vasopressors (6%). Grade ≥3 anemia, neutropenia, and thrombocytopenia at 29 d occurred in 21%, 55%, and 44% of pts (median time to resolution to grade ≤2 of any cytopenia, ≤2.1 mo). Grade ≥3 infections occurred in 14%. After a median follow-up (F/U) of 5.9 mo, median progression-free survival was not reached. Conclusions: Orva-cel at 300, 450, and 600 × 106 CAR+ T cells demonstrated manageable safety (CRS grade ≥3: 2%; NE grade ≥3: 4%) and compelling efficacy in heavily pretreated pts with RRMM, with a 91% objective response rate (ORR) and 39% complete response (CR)/stringent CR (sCR) rate. Updated results will be presented, including minimal residual disease, durability of response, and recommended phase 2 dose. Clinical trial information: NCT03430011 . [Table: see text]

2019 ◽  
Vol 37 (15_suppl) ◽  
pp. 7516-7516 ◽  
Author(s):  
Michael Wang ◽  
Leo I. Gordon ◽  
Maria Lia Palomba ◽  
Jeremy S. Abramson ◽  
Charalambos Andreadis ◽  
...  

7516 Background: Most pts with MCL relapse after first-line immunochemotherapy, with poor responses to salvage therapy. We report initial dose-finding results from pts with R/R MCL treated with liso-cel (JCAR017), an investigational, anti-CD19 CAR T cell product administered as a defined composition of CD4+/CD8+ CAR T cells, in the ongoing phase 1 TRANSCEND study. Methods: Eligible pts had confirmed MCL (cyclin D1 expression, t[11;14]) with R/R disease after ≥1 prior lines of therapy. After lymphodepleting chemotherapy, liso-cel was administered at 1 of 2 dose levels (DL): DL1 = 50 × 106 or DL2 = 100 × 106 total CAR+ T cells. Results: At data cutoff, 9 pts (DL1, n = 6; DL2, n = 3) had received liso-cel. The median (range) age was 66 (58‒78) years; 7 pts were male. Histologies included blastoid (n = 3) and pleiomorphic (n = 1) variants. 8 pts had documented Ki67 > 30% (40%‒80%); 1 pt had TP53 mutation. Pts had received a median of 5 (3‒7) prior therapies; 3 pts had received prior hematopoietic stem cell transplant. All 9 pts had prior ibrutinib; 4 had a best response of progressive disease on ibrutinib. 6/9 pts (67%) received bridging chemotherapy. 4/9 pts (44%) had serious treatment-emergent adverse events (TEAEs). 5/9 pts (56%) had grade (G) 3/4 TEAEs, primarily anemia, neutropenia, and hypophosphatemia (22% each). 3/9 pts (33%) had cytokine release syndrome (CRS); all were G1. Median time to CRS onset was 6 (2‒7) days; median time to resolution was 6 (2‒6) days. 1 pt received tocilizumab and corticosteroids. There were no neurological events. 4 pts died, all in DL1 (3 from disease progression; 1 after receiving new anticancer therapy post liso-cel). Overall response rate was 78% (7/9 pts; 4/6 in DL1, median follow-up 12.4 [95% CI: 9.2–12.4] mo; 3/3 in DL2, median follow-up 1.4 [95% CI: 1.0–1.4] mo). 2 pts in DL1 maintained a durable CR until last follow-up (day 281 and 378, respectively). Median time to peak CAR+ T cell expansion: 9.5 (9–10) days at DL1 and 17.5 (10–27) days at DL2. Conclusions: In this phase 1 study in pts with R/R MCL, liso-cel treatment showed tolerable toxicity and had clinical activity. Updated DL2 data and longer follow-up will be presented. Clinical trial information: NCT02631044.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. 8008-8008 ◽  
Author(s):  
Caron A. Jacobson ◽  
Julio C. Chavez ◽  
Alison R. Sehgal ◽  
Basem M. William ◽  
Javier Munoz ◽  
...  

8008 Background: Advanced stage iNHL, including follicular lymphoma (FL) and marginal zone lymphoma (MZL), is considered incurable as most pts experience multiple relapses (Wang, et al. Ther Adv Hematol. 2017), highlighting a need for novel therapies. Here, we present interim results from ZUMA-5, a Phase 2, multicenter study of axi-cel, an autologous anti-CD19 chimeric antigen receptor (CAR) T cell therapy, in pts with R/R iNHL. Methods: Adults with R/R FL (Grades 1-3a) or MZL (nodal or extranodal) after ≥ 2 lines of therapy (including an anti-CD20 monoclonal antibody [mAb] with an alkylating agent), and an ECOG of 0 – 1 were eligible. Pts were leukapheresed and received conditioning chemotherapy followed by axi-cel infusion at 2 × 106 CAR T cells/kg. The primary endpoint was objective response rate (ORR) by central review (Cheson, et al. J Clin Oncol. 2014). Secondary endpoints included duration of response (DOR), progression-free survival (PFS), overall survival (OS), safety, and blood levels of cytokines and CAR T cells. Results: As of 8/20/19, 94 pts (80 FL; 14 MZL) received axi-cel with a median follow-up of 11.5 mo (range, 4.2 – 24.9). Median age was 63 y (range, 34 – 79), 47% of pts were male, 52% had stage IV disease, 51% had ≥ 3 FLIPI, and 59% had high tumor bulk (GELF). Pts had a median 3 prior lines of therapy, 66% progressed < 2 y after initial anti-CD20 mAb-containing therapy (POD24), and 73% were refractory to the last prior treatment. Of 87 pts evaluable for efficacy, ORR was 94% (79% complete response [CR] rate). Pts with FL (n = 80) had an ORR of 95% (80% CR rate). Pts with MZL (n = 7) had an ORR of 86% (71% CR rate). Overall, 68% of pts had ongoing responses as of the data cutoff. Updated data, including DOR, PFS, and OS with longer follow-up, will be included in the presentation. Of 94 pts evaluable for safety, 83% experienced Grade ≥ 3 adverse events (AEs), most commonly neutropenia (33%) and anemia (28%). Grade ≥ 3 cytokine release syndrome (CRS; per Lee et al, Blood 2014) and neurologic events (NEs; per CTCAE v4.03) occurred in 11% and 19% of pts, respectively. Median times to onset of CRS and NEs were 4 and 7 d, with median durations of 6 and 14.5 d. There were 2 Grade 5 AEs: multisystem organ failure in the context of CRS (related to axi-cel) and aortic dissection (unrelated to axi-cel). Median peak and AUC0-28 CAR T cell levels were 44 cells/µL and 490 cells/µL × d, respectively. Conclusions: Axi-cel demonstrated significant and durable clinical benefit, with high rates of ORR and CR, and a manageable safety profile in pts with R/R iNHL. Clinical trial information: NCT03105336 .


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1736-1736
Author(s):  
Larisa Shelikhova ◽  
Olga Molostova ◽  
Arina Rakhteenko ◽  
Rimma Khismatullina ◽  
Julia Abugova ◽  
...  

Abstract Introduction Autologous chimeric antigen receptor (CAR) T cells induce high rate of deep remissions among children with relapsed/refractory B-precursor acute lymphoblastic leukemia (R/R B-ALL). In a significant proportion of patients true cure is achieved only with HSCT as post-CAR-T consolidation. Seeking to combine the cytoreductive and curative power of HSCT with the antigen-specific activity of CAR-T we devised an approach with simultaneous infusion of haploidentical ab T cell-depleted graft and CAR-T cells, derived from the same donor. The approach was offered to patients with R/R B-ALL on a compassionate use basis and here the first experience is summarized. Patients and methods A total of 11 patients with relapsed/refractory BCP-ALL (n-10) and Burkitt leukemia(n-1), (5 female, 6 male, median age 8,3 y) were treated. Three patients had relapsed BCP-ALL after both haploidentical HSCT and autologous CD19 CAR-T cell, 3 after haploidentical HSCT, 2 after autologous CD19 CAR-T cell, 3 after intensive chemotherapy +/- blinatumomab (n=2). Seven patients had CD19 and CD22 positive leukemic cells in bone marrow (MRD+ n=1, &gt;20% blasts n=6), 2 pts had MRD-level disease with CD22 positive blast cells and 2 pts were in CR2. Peripheral blood mononuclear cells used to produce CAR T cells were provided by the patient's transplant donor. The CliniMACS Prodigy T cell transduction (TCT) process was used to produce CD19 and СD19/22CAR-T cells. Five (45%) pts received treosulfan-based myeloablative preparative regimen, while TBI-based regimen was used in 6 (55%) pts. GvHD prophylaxis included tocilizumab at 8 mg/kg on day -1 and abatacept at 10 mg/kg on day -1, +7, +14, +28. Final product was administered without cryopreservation to the patients: 10 pts received allogeneic CAR T cell with haploidentical (n=10) and match related (n=1) TCRαβ-depleted graft (CD19 CAR- T cell n=1 and CD19/22 CAR- T cell n=10). The CAR-T cell product was administered at a dose of 0,1*10 6/kg of CAR-T cells in all pts. The median dose of CD34+ cells was 8.5 x10 6/kg (range 5-15), αβ T cells - 56x10 3/kg (range 9-172). Results Primary engraftment was achieved in 10 of 11 pts (non-engraftment patient relapsed early), the median time to neutrophil and platelet recovery was 13 and 14 days, respectively. Cytokine release syndrome occurred in 7 patients (63%) and all were grade ≤3. Six patients (54%) had neurologic events (ICANS grade 3, n=1). No aGVHD 3-4 were observed, 4 pts developed grade 2 aGVHD (skin and gut). The median time to CAR-T cell peak expansion was 14 days (7-28). The median time to CAR-T cell persisted was 6 months (2-12) and B cell aplasia was 7 months. All engrafted patients achieved CR (MRD negative) at day +28 after CAR-T cell therapy, one patient died due to Mucormycosis at day +31. One patient relapsed after 2 months after HST. Eight patients are alive in CR with a median follow up 291 days (85-388). Conclusion Our early experience suggests that haploidentical CAR-T cells can be safely infused simultaneously with the hematopoietic stem cell graft on the platform of ab T cell depletion. The infusions did not compromise engraftment and GVHD control, while specific CAR-T toxicity was mild and manageable. We have documented allogeneic haploidentical CAR-T expansion and persistence. Prospective testing of the approach is warranted. Disclosures Maschan: Miltenyi Biotec: Speakers Bureau.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 955-955 ◽  
Author(s):  
Wan-Hong Zhao ◽  
Jie Liu ◽  
Bai-Yan Wang ◽  
Yin-Xia Chen ◽  
Xing-Mei Cao ◽  
...  

Abstract LCAR-B38M is a bispecific chimeric antigen receptor T cell (CAR T) therapy directed against B-cell maturation antigen (BCMA). The bi-epitope BCMA binding moieties confer high avidity binding and distinguish LCAR-B38M from other BCMA CAR constructs. Preliminary results of LCAR-B38M in patients (pts) with relapsed/refractory (R/R) multiple myeloma (MM) showed encouraging efficacy and manageable safety (Fan et al.JCO 2017;35:18_suppl LBA3001). Here we present updated safety and efficacy results of the trial. LEGEND-2 (NCT03090659) is an ongoing phase 1, single-arm, open-label multicenter study evaluating LCAR-B38M in pts (18-80 years) with R/R MM. Lymphodepletion was performed using 3 doses of cyclophosphamide 300 mg/m2 on days -5, -4, and -3. Five days after lymphodepletion, LCAR-B38M CAR T cells (median CAR+ cell dose = 0.5x106 cells/kg, [range, 0.07-2x106]) were given in 3 infusions (20, 30, and 50% of total dose). The primary objective is to evaluate the safety of LCAR-B38M CAR T cells; the secondary objective is to evaluate the anti-myeloma response of the treatment. Adverse events (AEs) were graded using the Common Terminology Criteria for AE, v.4.03, and cytokine release syndrome (CRS) was assessed according to Lee et al. (Blood 2014;124:188-95). Response was evaluated using International Myeloma Working Group criteria. This analysis presents data from a single institution. As of June 25, 2018, 57 pts have been infused with LCAR-B38M CAR T cells. The median age was 54 years (range, 27-72), median number of prior therapies was 3 (range, 1-9), and 74% of pts had stage III disease by Durie-Salmon staging. The median duration of follow-up for all pts was 12 months (range, 0.7-25). AEs were reported by all pts; most common were pyrexia (91%), CRS (90%), thrombocytopenia (49%), and leukopenia (47%). Grade ≥3 AEs were reported by 65% of pts; most common were leukopenia (30%), thrombocytopenia (23%), and increased aspartate aminotransferase (21%). CRS was mostly grade 1 (47%) and 2 (35%); 4 pts (7%) had grade 3 cases. Liver function abnormalities were the most common signs of end organ injury among pts with CRS. The median time to onset of CRS was 9 days (range, 1-19). All but 1 CRS events resolved, with a median duration of 9 days (range, 3-57). No clear relationship was demonstrated between dose and CRS; there may be some effect at higher doses, but conclusions are limited by the small number of pts in the grade 3 CRS group (n=4; Figure 1A). Neurotoxicity was observed in 1 pt who had grade 1 aphasia, agitation, and seizure-like activity. The overall response rate (partial response [PR] or better) was 88% (95% confidence interval [CI], 76-95). Complete response (CR) was achieved by 42 pts (74%; 95% CI, 60-85), very good partial response was achieved by 2 pts (4%; 95% CI, 0.4-12), and PR was achieved by 6 pts (11%; 95% CI, 4-22; Figure 1B). Among pts with CR, 39/42 were minimal residual disease (MRD) negative by 8-color flow cytometry. The median time to initial response was 1 month (range, 0.4-4). No clear relationship between LCAR-B38M CAR T cell dose and response was observed (Figure 1C). BCMA expression did not correlate with clinical response. The median duration of response (DOR) was 16 months (95% CI, 12-not reached [NR]). The median DOR for pts who achieved a CR was 22 months (95% CI, 14-NR). At data cutoff, 18 pts (36%) who achieved PR or better progressed. The median progression-free survival (PFS) for all treated pts was 15 months (95% CI, 11-NR); median PFS for pts who achieved CR was 24 months (95% CI, 15-NR). The median overall survival was not reached. Overall, 17 pts died during the study and follow-up period; causes of death were progressive disease (PD; n=14), suicide after PD (n=1), esophagitis (n=1), and pulmonary embolism and acute coronary syndrome (n=1). Peak levels of LCAR-B38M (≥1x104 copies/µg genomic DNA) were observed in a majority of pts with blood samples for analysis (n=32). LCAR-B38M CAR T cells were not detectable in peripheral blood in 71% of pts at 4 months; 5 pts showed CAR T cell persistence up to 10 months. This ongoing first-in-human study has provided initial proof-of-concept that bispecific LCAR-B38M CAR T cells may be a highly effective therapy for R/R MM. LCAR-B38M CAR T cell therapy displayed a manageable safety profile consistent with its known mechanism of action and demonstrated deep and durable responses in pts with R/R MM. A phase 1/2 study of LCAR-B38M in R/R MM has been initiated in the US (NCT03548207). Disclosures Zhuang: Nanjing Legend Biotech: Employment. Fan:Nanjing Legend Biotech: Employment.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii360-iii360
Author(s):  
Nicholas Vitanza ◽  
Juliane Gust ◽  
Ashley Wilson ◽  
Wenjun Huang ◽  
Francisco Perez ◽  
...  

Abstract We report preliminary results of three Phase 1 trials of repetitively dosed locoregional CAR T cells for children with recurrent/refractory CNS tumors, targeting HER2 (BrainChild-01), EGFR (BrainChild-02), and B7-H3 (BrainChild-03). Cells are delivered into the tumor cavity (Arm A) or ventricular system (Arm B and BrainChild-03’s DIPG-specific Arm C). Primary endpoints are feasibility and safety. Successful CAR T cell manufacture occurred in 2/2 subjects (BrainChild-01) and 2/3 (BrainChild-02). All subjects tolerated intra-patient dose escalation from 1x107 to 2.5x107 cells/dose without DLTs. Two subjects were evaluable on BrainChild-01 (S-001: glioblastoma, Arm A, survival 173 days post-first infusion, received 6 infusions; S-002: ependymoma, Arm B, survival 111 days, 9 infusions). One subject was evaluable on BrainChild-02 (glioblastoma, Arm A, withdrew from trial at 49 days, 5 infusions). One enrolled patient on BrainChild-03 has not begun treatment. None of the subjects developed new neurologic toxicities, although transient worsening of baseline tumor-related signs and symptoms were seen. Secondary endpoints are efficacy and disease response. No objective radiographic responses have been observed. Both BrainChild-01 subjects had transient systemic CRP elevations following infusions (S-001: peak of 3.9 post Course 1 Week 1; S-002: peak of 2.3 post Course 2 Week 1), possibly indicating an inflammatory response. Both subjects had post-infusion CSF cytokine elevations (CXCL10, GCSF, GM-CSF, IFNa2, IFNg, IL-10, IL12-p40, IL12-p70, IL-15, IL-1a, IL-3, IL-6, IL-7, TNFa, VEGF) without concurrent systemic changes. In summary, we provide preliminary evidence of safety and feasibility of intracranial delivery of CAR T cells for pediatric CNS tumors.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 4-6
Author(s):  
Xian Zhang ◽  
Junfang Yang ◽  
Wenqian Li ◽  
Gailing Zhang ◽  
Yunchao Su ◽  
...  

Backgrounds As CAR T-cell therapy is a highly personalized therapy, process of generating autologous CAR-T cells for each patient is complex and can still be problematic, particularly for heavily pre-treated patients and patients with significant leukemia burden. Here, we analyzed the feasibility and efficacy in 37 patients with refractory/relapsed (R/R) B-ALL who received CAR T-cells derived from related donors. Patients and Methods From April 2017 to May 2020, 37 R/R B-ALL patients with a median age of 19 years (3-61 years), were treated with second-generation CD19 CAR-T cells derived from donors. The data was aggregated from three clinical trials (www.clinicaltrials.gov NCT03173417; NCT02546739; and www.chictr.org.cn ChiCTR-ONC-17012829). Of the 37 patients, 28 were relapsed following allogenic hematopoietic stem cell transplant (allo-HSCT) and whose lymphocytes were collected from their transplant donors (3 HLA matched sibling and 25 haploidentical). For the remaining 9 patients without prior transplant, the lymphocytes were collected from HLA identical sibling donors (n=5) or haploidentical donors (n=4) because CAR-T cells manufacture from patient samples either failed (n=5) or blasts in peripheral blood were too high (&gt;40%) to collect quality T-cells. The median CAR-T cell dose infused was 3×105/kg (1-30×105/kg). Results For the 28 patients who relapsed after prior allo-HSCT, 27 (96.4%) achieved CR within 30 days post CAR T-cell infusion, of which 25 (89.3%) were minimal residual disease (MRD) negative. Within one month following CAR T-cell therapy, graft-versus-host disease (GVHD) occurred in 3 patients including 1 with rash and 2 with diarrhea. A total of 19 of the 28 (67.9%) patients had cytokine release syndrome (CRS), including two patients (7.1%) with Grade 3-4 CRS. Four patients had CAR T-cell related neurotoxicity including 3 with Grade 3-4 events. With a medium follow up of 103 days (1-669days), the median overall survival (OS) was 169 days (1-668 days), and the median leukemia-free survival (LFS) was 158 days (1-438 days). After CAR T-cell therapy, 15 patients bridged into a second allo-HSCT and one of 15 patients (6.7%) relapsed following transplant, and two died from infection. There were 11 patients that did not receive a second transplantation, of which three patients (27.3%) relapsed, and four parents died (one due to relapse, one from arrhythmia and two from GVHD/infection). Two patients were lost to follow-up. The remaining nine patients had no prior transplantation. At the time of T-cell collection, the median bone marrow blasts were 90% (range: 18.5%-98.5%), and the median peripheral blood blasts were 10% (range: 0-70%). CR rate within 30 days post CAR-T was 44.4% (4/9 cases). Six patients developed CRS, including four with Grade 3 CRS. Only one patient had Grade 3 neurotoxicity. No GVHD occurred following CAR T-cell therapy. Among the nine patients, five were treated with CAR T-cells derived from HLA-identical sibling donors and three of those five patients achieved CR. One patient who achieved a CR died from disseminated intravascular coagulation (DIC) on day 16. Two patients who achieved a CR bridged into allo-HSCT, including one patient who relapsed and died. One of two patients who did not response to CAR T-cell therapy died from leukemia. Four of the nine patients were treated with CAR T-cells derived from haploidentical related donors. One of the four cases achieved a CR but died from infection on day 90. The other three patients who had no response to CAR T-cell therapy died from disease progression within 3 months (7-90 days). Altogether, seven of the nine patients died with a median time of 19 days (7-505 days). Conclusions We find that manufacturing CD19+ CAR-T cells derived from donors is feasible. For patients who relapse following allo-HSCT, the transplant donor derived CAR-T cells are safe and effective with a CR rate as high as 96.4%. If a patient did not have GVHD prior to CAR T-cell therapy, the incidence of GVHD following CAR T-cell was low. Among patients without a history of transplantation, an inability to collect autologous lymphocytes signaled that the patient's condition had already reached a very advanced stage. However, CAR T-cells derived from HLA identical siblings can still be considered in our experience, no GVHD occurred in these patients. But the efficacy of CAR T-cells from haploidentical donors was very poor. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 4 (13) ◽  
pp. 3024-3033 ◽  
Author(s):  
Kitsada Wudhikarn ◽  
Martina Pennisi ◽  
Marta Garcia-Recio ◽  
Jessica R. Flynn ◽  
Aishat Afuye ◽  
...  

Abstract Cytokine release syndrome (CRS) immune effector cell–associated neurotoxicity syndrome are the most notable toxicities of CD19 chimeric antigen receptor (CAR) T-cell therapy. In addition, CAR T-cell–mediated toxicities can involve any organ system, with varied impacts on outcomes, depending on patient factors and involved organs. We performed detailed analysis of organ-specific toxicities and their association with outcomes in 60 patients with diffuse large B-cell lymphoma (DLBCL) treated with CD19 CAR T cells by assessing all toxicities in organ-based groups during the first year posttreatment. We observed 539 grade ≥2 and 289 grade ≥3 toxicities. Common grade ≥3 toxicities included hematological, metabolic, infectious, and neurological complications, with corresponding 1-year cumulative incidence of 57.7%, 54.8%, 35.4%, and 18.3%, respectively. Patients with impaired performance status had a higher risk of grade ≥3 metabolic complications, whereas elevated lactate dehydrogenase was associated with higher risks of grade ≥3 neurological and pulmonary toxicities. CRS was associated with higher incidence of grade ≥3 metabolic, pulmonary, and neurologic complications. The 1-year nonrelapse mortality and overall survival were 1.7% and 69%, respectively. Only grade ≥3 pulmonary toxicities were associated with an increased mortality risk. In summary, toxicity burdens after CD19 CAR T-cell therapy were high and varied by organ systems. Most toxicities were manageable and were rarely associated with mortality. Our study emphasizes the importance of toxicity assessment, which could serve as a benchmark for further research to reduce symptom burdens and improve tolerability in patients treated with CAR T cells.


Blood ◽  
2020 ◽  
Author(s):  
Jordan Gauthier ◽  
Evandro D. Bezerra ◽  
Alexandre V. Hirayama ◽  
Salvatore Fiorenza ◽  
Alyssa Sheih ◽  
...  

CD19-targeted chimeric antigen receptor-engineered (CD19 CAR) T cell therapy has shown significant efficacy for relapsed or refractory (R/R) B-cell malignancies. Yet CD19 CAR T cells fail to induce durable responses in most patients. Second infusions of CD19 CAR T cells (CART2) have been considered as a possible approach to improve outcomes. We analyzed data from 44 patients with R/R B-cell malignancies (ALL, n=14; CLL, n=9; NHL, n=21) who received CART2 on a phase 1/2 trial at our institution. Despite a CART2 dose increase in 82% of patients, we observed a low incidence of severe toxicity after CART2 (grade ≥3 CRS, 9%; grade ≥3 neurotoxicity, 11%). After CART2, CR was achieved in 22% of CLL, 19% of NHL, and 21% of ALL patients. The median durations of response after CART2 in CLL, NHL, and ALL patients were 33, 6, and 4 months, respectively. Addition of fludarabine to cyclophosphamide-based lymphodepletion before CART1 and an increase in the CART2 dose compared to CART1 were independently associated with higher overall response rates and longer progression-free survival after CART2. We observed durable CAR T-cell persistence after CART2 in patients who received Cy-Flu lymphodepletion before CART1 and a higher CART2 compared to CART1 cell dose. The identification of two modifiable pre-treatment factors independently associated with better outcomes after CART2 suggests strategies to improve in vivo CAR T-cell kinetics and responses after repeat CAR T-cell infusions, and has implications for the design of trials of novel CAR T-cell products after failure of prior CAR T-cell immunotherapies.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. 3024-3024 ◽  
Author(s):  
Bijal D. Shah ◽  
William G. Wierda ◽  
Gary J. Schiller ◽  
Michael Russell Bishop ◽  
Januario E. Castro ◽  
...  

3024 Background: Promising results have been observed with KTE-C19, an anti-CD19 CAR T cell therapy, in refractory aggressive NHL in the ZUMA-1 trial (Blood 2016;128:LBA-6). We present here updated results from the ZUMA-3 phase 1 trial of KTE-C19 in adult patients (pts) with R/R ALL. Methods: Adult (≥18 y) pts with R/R ALL (Ph+ eligible), ≥25% bone marrow (BM) blasts, adequate organ function and ECOG status 0-1 received 1 or 2×106 CAR T cells/kg after conditioning with cyclophosphamide + fludarabine. Phase 1 primary endpoint is incidence of dose-limiting toxicity (DLT). Secondary endpoints include efficacy outcomes and biomarker associations. Results: As of Nov 1, 2016, 11 pts were enrolled; 10 received KTE-C19. One pt had a serious adverse event (SAE) prior to dosing and was not treated. KTE-C19 was successfully manufactured in all pts across a broad range of baseline absolute lymphocyte counts in 6 days in a centralized facility, with an approximate 2-week turnaround time. Pts were 60% men with 1-4 prior lines of therapy and high disease burden (median, 70% BM blasts). No pt (0/3) experienced a DLT at the 2×106 dose. Phase 1 was expanded to 6 pts at the same dose; 1 grade (Gr) 5 AE (multiorgan failure due to cytokine release syndrome [CRS]) was observed. Subsequent pts (4) received 1×106 CAR T cells/kg. Overall, the most common Gr≥3 AEs were cytopenias (80%), febrile neutropenia (50%), pyrexia (40%), and transaminitis (40%). Gr≥3 CRS and neurologic events (NEs) were reported in 20% and 40% of pts, respectively. Cerebral edema was not observed. All CRS (except Gr5) and 5 of 6 NEs (1 Gr3 ongoing at cut-off) resolved. Of the 8 efficacy evaluable pts, 6 achieved an MRD-negative (MRD–) complete response (CR, or CR + partial or incomplete hematopoietic recovery). Updated results will include additional pt follow-up and biomarker data. Conclusions: No DLTs were observed with KTE-C19 in adult pts with high BM disease burden; one pt had G5 CRS after the DLT cohort. Manufacturing was successful in all pts; most pts achieved an MRD– CR. Based on these results, ZUMA-3 continues to enroll pts with additional measures implemented to further enhance safety. Clinical trial information: NCT02614066.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2820-2820
Author(s):  
Xian Zhang ◽  
Gailing Zhang ◽  
Wenqian Li ◽  
Liyuan Qiu ◽  
Dongchu Wang ◽  
...  

Abstract Background In October 2020, we began the clinical trials of CD7 CAR-T treatment for CD7-positive hematological malignancies at our center. We found that the proliferation profile and evolution of CD7 CAR-T cells within 1-month following infusion into patients were quite different from those of CD19 CAR-T cells. From these data, we reasoned that the time to occurrence of CAR-T-cell-related side effects might also differ between the two cellular therapies. Here, we systematically compared the proliferation and CAR-T-cell-related side effects of CD7 CAR-T cells to these of CD19 CAR-T cells. Patients and Methods From October 2020 to June 2021, a total of 30 patients (24 male, 6 female) including 22 with T-cell acute lymphoblastic leukemia (T-ALL), 3 with T-cell lymphoblastic lymphoma (T-LBL), and 5 with mixed phenotype acute leukemia (MPAL) received autologous CD7 CAR-T cells manufactured by the SenlangBio company (https://clinicaltrials.gov NCT04572308, NCT04796441 and NCT04938115). The median follow-up time was 116 days (range: 15-221days). On Day 30, 25/30 patients (83.3%) achieved complete remission (CR)/CR with incomplete blood recovery (CRi). From December 2017 to June 2021, 45 B-ALL patients (19 male, 26 female) received CD19 CAR-T cells, also manufactured by SenlangBio (NCT04792593 and NCT04546893). The median follow-up time was 351 days (range: 15-1110days). On Day 30, 43/45 patients (95.6%) achieved CR/CRi. The median infused CD7 CAR-T cell dose was 1×10 6/kg (range: 0.5-2×10 6/kg), and the median infused CD19 CAR-T cell dose was 3×10 5/kg (range: 0.2-10×10 5/kg). The CD7 or CD19 CAR-T cell ratio in peripheral blood lymphocytes (PBLC) and the CD7 or CD19 B-lymphocyte percentage in PBLC samples from patients were analyzed on days 0, 4, 7, 10, 14, 21, and 30 following CAR-T cell infusion using flow cytometry. Results The presence of CD7 CAR-T cells in the PBLC samples were gradually detected following CD7 CAR-T cell infusion. The CD7 CAR-T cell ratio in PBLC increased significantly on Day 10. CD7 CAR-T cell peak appeared on Day 21 with a peak of 39.14% (range: 0.04%-74.58%), and was still detectable on Day 30 with a high CD7 CAR-T ratio of 7.5% (1.15%-70.41%). The ratio of CD19 CAR-T cells in patient PBLC samples showed a significant increase on Day 7 following infusion, and the CAR-T cell peak appeared on Day 10 with a peak of 14.71% (range: 0.11%-89.33%), and then quickly decreased to 0.23% (range: 0%-82.88%) on Day 21 (Figure 1). As the CAR-T cells increased, the proportion of target cells decreases significantly (Figure 2). However, the rate of decrease of CD19 cells differed from that of CD7 cells. CAR-T cell proliferation is also associated with CAR-T-cell-related adverse effects including cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). Observing the adverse effects after CD7 CAR-T infusion, we found that fever (incidence rate of 83.8%) occurred on the first 1-3 days following infusion, with a body temperature among patients of about 38°C. After patients' body temperature dropped to approximately normal levels, fever occurred again on Day 10-21 (incidence rate of 77.4%), and a higher temperature of 38-40°C was observed. The adverse event profile coincided with the proliferation of CD7 CAR-T cells we observed. Among the 30 cases, 5 had Grade 2 CRS, 2 had CRS of Grade ≥3, and 1 patient had Grade 3 ICANS. Fever following CD19 CAR-T infusion consisted mainly on Day 7-14 after the infusion (incidence rate of 86.6%), followed by a gradual drop of body temperature to normal after Day 14. Among the 45 patients, 5 had Grade 2 CRS, 5 had CRS of Grade ≥3 and 7 had Grade ≥3 ICANS. Conclusions In this clinical study, we found that the proliferation and evolution of CD7 CAR-T cells are distinct from that of C19 CAR-T cells. CD7 CAR-T cells began to proliferate significantly later following patient infusion and persisted longer compared to CD19 CAR-T cells. We found that patients experienced two rounds of fever, appearing on Day 1-3 and Day 10-21 following CD7 CAR-T infusion, which required more attention and prevention compared to the fever experienced by patients infused with CD19 CAR-T cells. However, the incidence of CRS and ICANS did not increase following CD7 CAR-T infusion. More patients and long-term observation are needed to confirm these results and to improve clinical management of patients treated with CAR-T cellular therapies. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document