Landscape of targetable alterations discovered by next generation sequencing demonstrates the role a community hospital can play in precision-guided oncology: Experience from Lenox Hill Hospital.

2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e19279-e19279
Author(s):  
Morana Vojnic ◽  
Jordan Steinberg ◽  
Igor Odintsov ◽  
Yonah Ziemba ◽  
Lindsay K Hill ◽  
...  

e19279 Background: Next generation sequencing (NGS) has become standard of care in aiding diagnosis and treatment of advanced solid cancers, and in conducting clinical trials at large centers. It is imperative that this is expanded to other hospitals that care for the majority of cancer patients. We analyzed NGS reports from our hospital to assess the number of patients who can benefit from approved or investigational targeted therapies. Methods: We analyzed NGS data for 511 solid tumor samples sequenced between January 1, 2018 and December 31, 2019. NGS was performed by GenPath Dx (77%), Caris Life Sciences (16%) or Foundation Medicine (7%). Results: The majority of samples represented advanced stage malignancies and 21% were stage I or II. They originated from the following primaries: 195 lung (37%), 150 gastrointestinal (29%), 64 primary brain (12%), 20 gynecological (4%), 14 skin (3%), 13 head and neck (3%) and 11 sarcomas (1%). 72 samples had mutations in EGFR (14%), 170 in TP53 (33%), 124 in KRAS (24%), 28 in BRAF (6%), and 3 in RET (0.6%). 34/107 (32%) early stage samples harbored an actionable mutation (20 EGFR mutations, 1 MET exon 14 skipping, 4 KRAS G12C, 7 BRAF V600E, 1 FGFR3 amplification and 1 CD74/NRG1 fusion). In contrast, only 58/317 (18%) advanced stage samples had a targetable mutation (p-value = 0.02, χ² test). 76% of EGFR-mutated samples were lung adenocarcinomas, and 19% were primary brain tumors; 54% of these are targetable by FDA-approved EGFR inhibitors. KRAS mutations were found in gastrointestinal (54%), lung (37%) and pancreatic (5%) malignancies. 17 patients had a KRAS G12C mutation and, therefore, could benefit from one of the KRAS G12C inhibitors in early clinical trials. Four samples harbored crizotinib-sensitive mutations (2 MET amplifications and 2 MET exon 14 skipping mutations). Regarding gene fusions, one glioblastoma sample had a PTPRZ-MET fusion and one lung adenocarcinoma sample harbored a CD74-NRG1 fusion. Conclusions: We identified 92/511 samples (18%) with clinically actionable mutations; distributed in 32% early stage and 18% advanced stage disease, indicating that actionable mutations are present at an increased frequency in early stage solid malignancies in our data set and trials to investigate targeted therapy in such settings should be considered. Furthermore, we show that a community-based hospital can be a site for future clinical trials of small molecule inhibitors and bring precision-guided medicine to additional patients.

2021 ◽  
Vol 11 ◽  
Author(s):  
Guotian Pei ◽  
Mingwei Li ◽  
Xianjun Min ◽  
Qiang Liu ◽  
Dasheng Li ◽  
...  

ObjectiveThe incidence of early stage multiple primary lung cancer (MPLC) has been increasing in recent years, while the ideal strategy for its diagnosis and treatment remains controversial. The present study conducted genomic analysis to identify a new molecular classification method for accurately predicting the diagnosis and therapy for patients with early stage MPLC.MethodsA total of 240 tissue samples from 203 patients with multiple-non-small-cell lung cancers (NSCLCs) (n = 30), early stage single-NSCLC (Group A, n = 94), and advanced-stage NSCLC (Group B, n = 79) were subjected to targeted multigene panel sequencing.ResultsThirty patients for whom next-generation sequencing was performed on >1 tumor were identified, yielding 45 tumor pairs. The frequencies of EGFR, TP53, RBM10, ERBB2, and CDKN2A mutations exhibited significant differences between early and advanced-stage NSCLCs. The prevalence of the EGFR L858R mutation in early stage NSCLC was remarkably higher than that in advanced-stage NSCLC (P = 0.047). The molecular method classified tumor pairs into 26 definite MPLC tumors and four intrapulmonary metastasis (IM) tumors. A high rate of discordance in driver genetic alterations was found in the different tumor lesions of MPLC patients. The prospective Martini histologic prediction of MPLC was discordant with the molecular method for three patients (16.7%), particularly in the prediction of IM (91.7% discordant).ConclusionsComprehensive molecular evaluation allows the unambiguous delineation of clonal relationships among tumors. In comparison, the Martini and Melamed criteria have notable limitations in the recognition of IM. Our results support the adoption of a large panel to supplement histology for strongly discriminating NSCLC clonal relationships in clinical practice.


2012 ◽  
Vol 30 (30_suppl) ◽  
pp. 60-60
Author(s):  
Chih-Jian Lih ◽  
Thomas Forbes ◽  
Michele Mehaffey ◽  
Eric Sause ◽  
David Sims ◽  
...  

60 Background: Molecular targeted therapies are increasingly important in treating cancer patients; robust analytically validated clinical assays are required for patient selection in early-stage clinical trials. The goal of Molecular Characterization Laboratory (MoCha) is to develop clinical diagnostic assays using next generation sequencing methods to support clinical studies in DCTD (CTEP). Methods: We developed a custom assay for somatic mutation detection using Fluidigm access array technology for amplicon generation followed by sequencing with the Illumina Miseq. A panel of 62 amplicons covering 6 Kb genomic regions was designed to detect 92 DNA loci, including common therapeutically actionable targets, in 37 genes. Analytical studies were performed using genomic DNA samples from fresh or formalin fixed cancer cell-lines and a normal hapmap individual (CEPH). We subsequently applied this assay to characterize DNA samples from both tumor tissues and blood specimens from ovarian cancer patients. Results: The assay detected known variants in both frozen and fixed DNA samples reproducibly with high sensitivity and specificity (<2%). Using a series of positive control plasmid spikes mixed into a normal reference CEPH DNA at pre-defined copy number ratios, we verified the assay is sensitive to detect variants at 5% allelic frequency with a minimum 400 X coverage. We identified somatic mutations in TP53 and PIK3CA in a few patients, and a germ-line variant D1583N in ATM genes occurring in one-third of tested patients. Conclusions: We developed and validated a next generation sequencing assay suitable for patient selection for clinical trials. Plans are to correlate sequencing and clinical results when clinical data are available.


2018 ◽  
Vol 36 (4_suppl) ◽  
pp. 295-295
Author(s):  
Ramya Thota ◽  
Mark Andrew Lewis ◽  
Sharanya Raghunath ◽  
Derrick S. Haslem ◽  
Lincoln Nadauld ◽  
...  

295 Background: HCC is a heterogeneous disease with diverse genomic alterations. The prior genomic studies have identified common alterations in TERT, P53, WNT pathways. However, most of these alterations are not targetable with current FDA approved targeted agents. In this study, we determine the clinical impact of targeted next generation sequencing in patients with advanced HCC. Methods: We retrospectively assessed all patients with gastrointestinal (GI) malignancies who have undergone next generation sequencing (NGS) between January 2013 and August 2017. The primary endpoint is to determine the frequency of clinically actionable mutations in HCC. Secondary endpoint is to identify number of patients eligible for current FDA approved targeted agents. Results: Of the 299 consecutive GI tumors sequenced, 29 cases were identified as HCC. Clinically actionable mutations were noted in 22 of 29 patients (pts) (76%). Most pts (52%) were found to harbor more than one potentially actionable genetic alterations (n = 15). The common pathways involved: P53 in 9 pts (22%), cell-cycle regulation in 7 pts (17.1%) and mitogen-activated protein kinase in 6 pts (14.6%). Other pathways involved were DNA repair in 4 pts (9.8%), WNT in 3 pts (7.3%), MYC in 3 pts (7.3%), NOTCH in 2 pts (4.9%), HNPCC in 2 pts (4.9%), APC in 2 pts (4.9%), phosphatidylinositol 3-kinase-AKT-mTOR in 1 patient (pt) (2.4%), BRINP in 1 pt (2.4%) and angiogenesis in 1 pt (2.4%). We noted 10 pts (34.5%) harbor alterations that could potentially be targeted with FDA approved treatments such as palbociclib (for CCND1/2 amplification), PARP inhibitors (for DNA repair defects), and immunotherapy (for MMR defects) on precision medicine clinical trials such as TAPUR or MATCH. Conclusions: Mutational profiling using a targeted NGS panel identified clinically actionable alterations in nearly 75% of advanced HCC patients. Almost one third of these patients were potential candidates for current FDA approved treatments. NGS and enrollment in clinical trials should be considered in all fit patients with HCC who had progression on current standard of care treatments.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Shunqiao Feng ◽  
Lin Han ◽  
Mei Yue ◽  
Dixiao Zhong ◽  
Jing Cao ◽  
...  

Abstract Background Langerhans cell histiocytosis (LCH) is a rare neoplastic disease that occurs in both children and adults, and BRAF V600E is detected in up to 64% of the patients. Several studies have discussed the associations between BRAF V600E mutation and clinicopathological manifestations, but no clear conclusions have been drawn regarding the clinical significance of the mutation in pediatric patients. Results We retrieved the clinical information for 148 pediatric LCH patients and investigated the BRAF V600E mutation using next-generation sequencing alone or with droplet digital PCR. The overall positive rate of BRAF V600E was 60/148 (41%). The type of sample (peripheral blood and formalin-fixed paraffin-embedded tissue) used for testing was significantly associated with the BRAF V600E mutation status (p-value = 0.000 and 0.000). The risk of recurrence declined in patients who received targeted therapy (p-value = 0.006; hazard ratio 0.164, 95%CI: 0.046 to 0.583). However, no correlation was found between the BRAF V600E status and gender, age, stage, specific organ affected, TP53 mutation status, masses close to the lesion or recurrence. Conclusions This is the largest pediatric LCH study conducted with a Chinese population to date. BRAF V600E in LCH may occur less in East Asian populations than in other ethnic groups, regardless of age. Biopsy tissue is a more sensitive sample for BRAF mutation screening because not all of circulating DNA is tumoral. Approaches with low limit of detection or high sensitivity are recommended for mutation screening to avoid type I and II errors.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Imteyaz Ahmad Khan ◽  
Safoora Rashid ◽  
Nidhi Singh ◽  
Sumaira Rashid ◽  
Vishwajeet Singh ◽  
...  

AbstractEarly-stage diagnosis of pancreatic ductal adenocarcinoma (PDAC) is difficult due to non-specific symptoms. Circulating miRNAs in body fluids have been emerging as potential non-invasive biomarkers for diagnosis of many cancers. Thus, this study aimed to assess a panel of miRNAs for their ability to differentiate PDAC from chronic pancreatitis (CP), a benign inflammatory condition of the pancreas. Next-generation sequencing was performed to identify miRNAs present in 60 FFPE tissue samples (27 PDAC, 23 CP and 10 normal pancreatic tissues). Four up-regulated miRNAs (miR-215-5p, miR-122-5p, miR-192-5p, and miR-181a-2-3p) and four down-regulated miRNAs (miR-30b-5p, miR-216b-5p, miR-320b, and miR-214-5p) in PDAC compared to CP were selected based on next-generation sequencing results. The levels of these 8 differentially expressed miRNAs were measured by qRT-PCR in 125 serum samples (50 PDAC, 50 CP, and 25 healthy controls (HC)). The results showed significant upregulation of miR-215-5p, miR-122-5p, and miR-192-5p in PDAC serum samples. In contrast, levels of miR-30b-5p and miR-320b were significantly lower in PDAC as compared to CP and HC. ROC analysis showed that these 5 miRNAs can distinguish PDAC from both CP and HC. Hence, this panel can serve as a non-invasive biomarker for the early detection of PDAC.


2017 ◽  
Vol 34 (7) ◽  
Author(s):  
Matthew K. Stein ◽  
Lindsay Morris ◽  
Jennifer L. Sullivan ◽  
Moon Fenton ◽  
Ari VanderWalde ◽  
...  

2018 ◽  
Vol 3 (2) ◽  
pp. 178-184 ◽  
Author(s):  
M Rabie Al-Turkmani ◽  
Kelley N Godwin ◽  
Jason D Peterson ◽  
Gregory J Tsongalis

AbstractBackgroundMolecular tests have been increasingly used in the management of various cancers as more targeted therapies are becoming available as treatment options. The Idylla™ system is a fully integrated, cartridge-based platform that provides automated sample processing (deparaffinization, tissue digestion, and DNA extraction) and real-time PCR-based mutation detection with all reagents included in a single-use cartridge. This retrospective study aimed at evaluating both the Idylla KRAS and NRAS-BRAF-EGFR492 Mutation Assay cartridges (research use only) against next-generation sequencing (NGS) by using colorectal cancer (CRC) tissue samples.MethodsForty-four archived formalin-fixed paraffin-embedded (FFPE) CRC tissue samples previously analyzed by targeted NGS were tested on the Idylla system. Among these samples, 17 had a mutation in KRAS proto-oncogene, GTPase (KRAS), 5 in NRAS proto-oncogene, GTPase (NRAS), and 12 in B-Raf proto-oncogene, serine/threonine kinase (BRAF) as determined using the Ion AmpliSeq 50-gene Cancer Hotspot Panel v2. The remaining 10 samples were wild-type for KRAS, NRAS, and BRAF. Two 10-μm FFPE tissue sections were used for each Idylla run, 1 for the KRAS cartridge, and 1 for the NRAS-BRAF-EGFR492 cartridge. All cases met the Idylla minimum tumor content requirement for KRAS, NRAS, and BRAF (≥10%). Assay reproducibility was evaluated by testing commercial controls derived from human cell lines, which had an allelic frequency of 50% and were run in triplicate.ResultsThe Idylla system successfully detected all mutations previously identified by NGS in KRAS (G12C, G12D, G12V, G13D, Q61K, Q61R, A146T), NRAS (G12V, G13R, Q61H), and BRAF (V600E). Compared with NGS, Idylla had a sensitivity of 100%. Analysis of the mutated commercial controls demonstrated agreement with the expected result for all samples and 100% reproducibility. The Idylla system produced results quickly with a turnaround time of approximately 2 h.ConclusionThe Idylla system offers reliable and sensitive testing of clinically actionable mutations in KRAS, NRAS, and BRAF directly from FFPE tissue sections.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii164-ii164
Author(s):  
Mary Jane Lim-Fat ◽  
Gilbert Youssef ◽  
Mehdi Touat ◽  
Bryan Iorgulescu ◽  
Eleanor Woodward ◽  
...  

Abstract BACKGROUND Comprehensive next generation sequencing (NGS) is available through many academic institutions and commercial entities, and is incorporated in practice guidelines for glioblastoma (GBM). We retrospective evaluated the practice patterns and utility of incorporating NGS data into routine care of GBM patients at a clinical trials-focused academic center. METHODS We identified 1,011 consecutive adult patients with histologically confirmed GBM with OncoPanel testing, a targeted exome NGS platform of 447 cancer-associated genes at Dana Farber Cancer Institute (DFCI), from 2013-2019. We selected and retrospectively reviewed clinical records of all IDH-wildtype GBM patients treated at DFCI. RESULTS We identified 557 GBM IDH-wildtype patients, of which 227 were male (40.7%). OncoPanel testing revealed 833 single nucleotide variants and indels in 44 therapeutically relevant genes (Tier 1 or 2 mutations) including PIK3CA (n=51), BRAF (n=9), FGFR1 (n=8), MSH2 (n=4), MSH6 (n=2) and MLH1 (n=1). Copy number analysis revealed 509 alterations in 18 therapeutically relevant genes including EGFR amplification (n= 186), PDGFRA amplification (N=39) and CDKN2A/2B homozygous loss (N=223). Median overall survival was 17.5 months for the whole cohort. Seventy-four therapeutic clinical trials accrued 144 patients in the upfront setting (25.9%) and 203 patients (36.4%) at recurrence. Altogether, NGS data for 107 patients (19.2%) were utilized for clinical trial enrollment or targeted therapy indications. High mutational burden (&gt;17mutations/Mb) was identified in 11/464 samples (2.4%); of whom 3/11 received immune checkpoint blockade. Four patients received compassionate use therapy targeting EGFRvIII (rindopepimut, n=2), CKD4/6 (abemaciclib, n=1) and BRAFV600E (dabrafenib/trametinib, n=1). CONCLUSION While NGS has greatly improved diagnosis and molecular classification, we highlight that NGS remains underutilized in selecting therapy in GBM, even in a setting where clinical trials and off-label therapies are relatively accessible. Continued efforts to develop better targeted therapies and efficient clinical trial design are required to maximize the potential benefits of genomically-stratified data.


Sign in / Sign up

Export Citation Format

Share Document