Geochemical evolution of saline waters in crystalline rocks: Chardon mine (France) – Part I: Behaviour of main ions

2021 ◽  
pp. 433-436
Author(s):  
C. Beaucaire ◽  
N. Gassama ◽  
N. Tresonne ◽  
D. Louvat
2001 ◽  
Vol 38 (7) ◽  
pp. 1059-1080 ◽  
Author(s):  
D M Allen ◽  
M Suchy

A detailed geochemical study of surface waters, spring waters, and groundwaters was undertaken to examine the geochemical evolution of groundwater on Saturna Island, British Columbia. The purpose of the study was to characterize the nature and occurrence of saline waters and to provide insight on chemical processes that lead to salinization in the fractured sedimentary bedrock aquifers of this small island. Major ion chemistry shows that groundwater is recharged locally but mixes with saline waters that occur at depth or near the coast. Simple mixing is complicated by cation exchange (between calcium-rich waters and sodium-rich exchange sites offered by mudstone beds) and results in a spatially variable hydrochemical composition that is dependent on the island topography and geological framework (structural, sedimentological, and glacial), in combination with groundwater use patterns. Sodium, present at exchange sites, is speculated to be a remnant of ocean water intrusion during the Pleistocene, when the island was submerged. As a result of its high mobility and conservative nature, chloride (and sulphate) has been flushed from the shallow bedrock during a process of natural desalinization but may remain trapped in the pores and fractures at depth. Modern salt-water intrusion, brought about by increased development on the island, is now competing with natural desalinization along the coast and has left many drinking-water supplies contaminated.


1981 ◽  
Vol 11 ◽  
Author(s):  
M.H. Bradbury ◽  
D. Lever ◽  
D. Kinsey

One of the options being considered for the disposal of radioactive waste is deep burial in crystalline rocks such as granite. It is generally recognised that in such rocks groundwater flows mainly through the fracture networks so that these will be the “highways” for the return of radionuclides to the biosphere. The main factors retarding the radionuclide transport have been considered to be the slow water movement in the fissures over the long distances involved together with sorption both in man-made barriers surrounding the waste, and onto rock surfaces and degradation products in the fissures.


2019 ◽  
Vol 70 (5) ◽  
pp. 1574-1578
Author(s):  
Cristian Neamtu ◽  
Bogdan Tutunaru ◽  
Adriana Samide ◽  
Alexandru Popescu

Electrochlorination constitutes an electrochemical approach for the treatment of pesticide-containing wastewaters. This study evaluated the electrochemical and thermal stability of four pesticides and the efficiency of electrochlorination to remove and detoxify the simulated polluted water with: Acetamiprid, Emamectin, Imidacloprid and Propineb. This study reports the experimental results obtained by cyclic voltammetry and electrolysis at constant current density in association with UV-Vis spectrophotometry. In saline waters this pesticides are electrochemical active and anodic peaks are registered in the corresponding voltammograms. After thermal combustion, in a gaseous nitrogen atmosphere, a residue ranging from 15 to 45 % is observed at 500 �C.


1986 ◽  
Vol 18 (4-5) ◽  
pp. 35-41 ◽  
Author(s):  
M. J. Gardner ◽  
D T. E. Hunt ◽  
G. Topping

It is widely recognised that, unless special steps are taken, analytical results from a group of laboratories engaged in a monitoring programme are likely to be of poor comparability. This in turn can prejudice the conclusions drawn from the results of monitoring. On the basis of previous studies, the problem is known to be particularly acute for measurements of trace metals in saline waters. Recognising the difficulty, the Marine Pollution Monitoring Management Group (MPMMG) and the Water Research centre (WRc) have organised a programme of Analytical Quality Control (AQC). This has the objective of ensuring that analytical results for filterable cadmium and mercury in saline waters, obtained by water industry and other relevant laboratories, are of adequate accuracy and comparability for their intended uses. WRc is to coordinate a series of tests, some involving distributions of standards and samples, which the participating laboratories undertake; this series of tests, the background to the approach and some of the results obtained to date are described here.


2016 ◽  
Author(s):  
Alexander A. Conti ◽  
◽  
Elizabeth H. Gierlowski-Kordesch

The Mesozoic Hartford Basin, a fault-bounded half-graben in New England, is composed of four sedimentologic units displaying lacustrine, playa, and alluvial conditions separated by three tholeiitic basalt flows. Limited outcrop, however, has restricted analyses across the basin. The Jurassic East Berlin Formation, in particular, crops out only in the southern and northern extents of the basin, exposing the upper 100-118-m of deposits. As a result, a new core analysis across a 600-m-transect of East Berlin rocks has been completed in the central region of the basin, exposing the entire 195-m thickness of the formation for the first time. Cores expose eight 3-m-thick lacustrine mudrock units, the upper six of which are correlative to lake deposits identified in the southern and northern extents of the basin. Additionally, thin chicken-wire evaporites demarcate the lowermost, previously unexposed, lacustrine unit, 7-m beneath a 15-cm-thick tufa horizon. Thin playa deposits and thick sheetflood and Vertisol packages separate these lake sequences over 5-30-m of vertical distance.To supplement these sedimentologic data, and better understand lake geochemistry of the basin during East Berlin time, new biomarker analyses have been applied to each of the eight lacustrine mudrock units for the first time. Biomarker data are useful for determining the lake-basin type, a paleolake classification system derived by Bohacs, Carroll, and others to describe predictable physical and geochemical evolution within rift basins from fluvial facies to over-filled, balance-filled, and under-filled lacustrine facies; subsequently, balance-filled lacustrine facies grade to a terminal fluvial facies during changes in accommodation space through time. While fluvial facies envelope lake deposits within the Hartford Basin, identifying the lake types within the East Berlin has been problematic because of limited exposures. These new sedimentologic and biomarker analyses, however, suggest balance-filled lacustrine conditions at the base of the East Berlin that grade into under-filled conditions upsection. These new biomarker data finally provide definitive evidence for changing lake types during East Berlin time.


2020 ◽  
Author(s):  
Hunter M. Manlove ◽  
◽  
Jay L. Banner ◽  
Lakin K. Beal ◽  
Darrel M. Tremaine ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document