Skin Permeation Enhancers for Improved Transdermal Drug Delivery

2017 ◽  
pp. 527-538
Author(s):  
Bruce J. Aungst
2019 ◽  
Vol 11 (1) ◽  
pp. 55
Author(s):  
Shikha Baghel Chauhan ◽  
Tanveer Naved ◽  
Nayyar Parvez

Objective: The combination therapy of ethinylestradiol and testosterone in post-menopausal females has shown improved sexual response and libido. The present studies were designed to develop a suitable matrix-type transdermal drug delivery system (TDDS) of ethinylestradiol and testosterone using the polymer chitosan.Methods: Five formulations (ET1 to ET5) were developed by varying the concentration of polymer and keeping the drug load constant. Physical parameters and drug excipient interaction studies were evaluated in all the formulations. In vitro skin permeation profiles of ethinylestradiol and testosterone from various formulations were simultaneously characterized in a thermostatically controlled modified Franz Diffusion cell using HPLC. Based on the physical parameters and in vitro skin permeation profile formulation ET3 containing 30 mg/ml of chitosan was found to be the best and chosen for further studies. Optimized formulation was subjected to in vivo pharmacokinetic analysis in rats using ELISA.Results: Stability profile of patch formulation ET3 depicted stability up to 3 mo. One week skin irritation evaluation in rats indicated that formulation ET3 was nonirritating. Combination transdermal patch across rat skin showed a maximum release of 92.936 and 95.03 % in 60 h with a flux of 2.088 and 21.398 µg/cm2h for ethinylestradiol and testosterone respectively.Conclusion: The net result of this study is the formulation of a stable, non-irritating transdermal patch of ethinylestradiol and testosterone, with good bioavailability and can be used as Estrogen Replacement Therapy (ERT) in postmenopausal women.


2009 ◽  
Vol 26 (6) ◽  
pp. 1344-1352 ◽  
Author(s):  
Suneela Prodduturi ◽  
Glen J. Smith ◽  
Anna M. Wokovich ◽  
William H. Doub ◽  
Benjamin J. Westenberger ◽  
...  

2021 ◽  
Vol 11 (5-S) ◽  
pp. 176-187
Author(s):  
Sudip Das ◽  
Koushik Sen Gupta

The drug delivery within the stratum corneum of the skin prevails a challenging area for the pharmaceutical field, especially to the formulation scientists. Several investigations revealed that the lipid domain, which is the integral component of the transport barrier, must be breached if it is to be delivered transdermally at an appropriate rate. In particular, transdermal drug delivery has intrigued researchers with multiple suggestions because multiple dosing or insufficient drug delivery or characteristics of various drugs often results in low therapeutic effects. The application of permeation or penetration enhancers may prolong the number of drugs that can be offered topically. The application of any natural permeation enhancer is innoxious over the artificial permeation enhancers. The natural permeation enhancers are investigated, so notably include essential oils, terpenes, terpenoids, fatty acid esters, etc., have a certain effect in the transdermal drug delivery system. Despite decades of investigation on the natural chemical penetration enhancer, the researchers could not establish the effectiveness of natural penetration enhancers clinically due to the lack of in vivo models. Several factors, like solubility, solvent selection, experimental models, etc., has restricted the application and development of natural penetration enhancers in topical drug delivery systems, especially in the patches. Therefore, further investigation needs to do on skin irritation to decide natural penetration enhancers controlling optimum enhancement effects with minimal skin irritation. This review gives a comprehensive literature survey on naturally obtained chemical penetration enhancers and their future possibilities. Keywords: Topical Drug delivery system, Natural products, Penetration enhancer, Stratum corneum, In vivo models.


2020 ◽  
Vol 2 (3) ◽  
Author(s):  
Luthfia Azzahra ◽  
Soraya Ratnawulan Mita ◽  
Sriwidodo Sriwidodo

Herbal compounds have different physicochemical properties. Its use on the oral route often has low biological availability. Therefore, alternative transdermal routes are used through the skin. The stratum corneum skin layer is the most difficult layer to penetrate. Therefore it is necessary to use a drug delivery system such as ethosome, transfersome or transethosome to increase transdermal drug delivery. This review article aims to look at the potential of ethosome, transfersome, and transethosome in increasing their ability to deliver herbal drugs in terms of their formulation and characterization. Literature searches were performed using online search engines namely NCBI and Google Scholar with the keywords ‘Transdermal Drug Delivery System’, 'Ethosome', 'Transfersome', and 'Transethosome'. The result showed compositions of ethosomes are phospholipids, water, and ethanol. The composition of transfersome is phospholipid, water, and edge activator. Transethosomes are a combination of phospholipids, water, ethanol, and edge activators. The role of ethanol and edge activator is thought to increase skin permeation. Transdermal drug delivery systems can be used on herbal drugs to increase transdermal drug delivery.Keywords: Transdermal, Ethosome, Transfersome, Transethosome, Herbal.


2020 ◽  
Vol 30 (45) ◽  
pp. 2004257
Author(s):  
Qin M. Qi ◽  
Miya Duffy ◽  
Alex M. Curreri ◽  
Joel P. R. Balkaran ◽  
Eden E. L. Tanner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document