Stability of concrete filled CFRP-steel tube under axial compression

2008 ◽  
pp. 129-134
Keyword(s):  
Structures ◽  
2021 ◽  
Vol 33 ◽  
pp. 1853-1867
Author(s):  
Yong Ye ◽  
Yang Liu ◽  
Zi-Xiong Guo ◽  
Rachel Chicchi

2021 ◽  
pp. 136943322110093
Author(s):  
Zhenzhen Liu ◽  
Yiyan Lu ◽  
Shan Li ◽  
Jiancong Liao

A comprehensive study of the shear characteristics of steel fiber reinforced recycled concrete-filled steel tube (SRCFST) columns is conducted. 50 CFST stub columns are tested with the variables of steel tube diameter-thickness ratio ( D/t), shear span-to-depth ratio (λ), axial compression ratio ( n), and concrete mix. Two types of cements, three recycled aggregate percentages, three water-cement ratios, and three steel fiber contents are considered in design of concrete mixes. The experimental results show that SRCFST columns present the coincident shear behavior of the ordinary CFST columns. As λ is increased, shear resistance shows a downtrend, while the flexural strength presents an increasing trend. Imposing axial compression or thickening steel tube contributes to an adequate safety margin in plastic period. Based on the contributions superposition method, a predicted model of the shear capacity of SRCFST columns is proposed in consideration of shear-span ratio, axial compression, and self-stress.


2006 ◽  
Vol 06 (04) ◽  
pp. 457-474 ◽  
Author(s):  
M. A. BRADFORD ◽  
A. ROUFEGARINEJAD ◽  
Z. VRCELJ

Circular thin-walled elastic tubes under concentric axial loading usually fail by shell buckling, and in practical design procedures the buckling load can be determined by modifying the local buckling stress to account empirically for the imperfection sensitive response that is typical in Donnell shell theory. While the local buckling stress of a hollow thin-walled tube under concentric axial compression has a solution in closed form, that of a thin-walled circular tube with an elastic infill, which restrains the local buckling mode, has received far less attention. This paper addresses the local buckling of a tubular member subjected to axial compression, and formulates an energy-based technique for determining the local buckling stress as a function of the stiffness of the elastic infill by recourse to a transcendental equation. This simple energy formulation, with one degree of buckling freedom, shows that the elastic local buckling stress increases from 1 to [Formula: see text] times that of a hollow tube as the stiffness of the elastic infill increases from zero to infinity; the latter case being typical of that of a concrete-filled steel tube. The energy formulation is then recast into a multi-degree of freedom matrix stiffness format, in which the function for the buckling mode is a Fourier representation satisfying, a priori, the necessary kinematic condition that the buckling deformation vanishes at the point where it enters the elastic medium. The solution is shown to converge rapidly, and demonstrates that the simple transcendental formulation provides a sufficiently accurate representation of the buckling problem.


2021 ◽  
Vol 186 ◽  
pp. 106909
Author(s):  
Zannatul Mawa Dalia ◽  
Anjan K. Bhowmick ◽  
Gilbert Y. Grondin

2021 ◽  
Author(s):  
Tran-Trung Nguyen ◽  
Phu-Cuong Nguyen ◽  
Viet Trinh Tran ◽  
Duc-Duy Pham ◽  
Lahouari Benabou

Sign in / Sign up

Export Citation Format

Share Document