Growth of bones from chick embryos

2021 ◽  
pp. 50-53
Author(s):  
E. J. Snell ◽  
H. R. Simpson
Keyword(s):  
Author(s):  
M.R. Richter ◽  
R.V. Blystone

Dexamethasone and other synthetic analogs of corticosteroids have been employed clinically as enhancers of lung development. The mechanism(s) by which this steroid induction of later lung maturation operates is not clear. This study reports the effect on lung epithelia of dexamethasone administered at different intervals during development. White Leghorn chick embryos were used so as to remove possible maternal and placental influences on the exogenously applied steroid. Avian lung architecture does vary from mammals; however, respiratory surfactant produced by the lung epithelia serves an equally critical role in avian lung physiology.


Author(s):  
M.J.C. Hendrix ◽  
D.E. Morse

Atrial septal defects are considered the most common congenital cardiac anomaly occurring in humans. In studying the normal sequential development of the atrial septum, chick embryos of the White Leghorn strain were prepared for scanning electron microscopy and the results were then extrapolated to the human heart. One-hundred-eighty chick embryos from 2 to 21 days of age were removed from their shells and immersed in cold cacodylate-buffered aldehyde fixative . Twenty-four embryos through the first week post-hatching were perfused in vivo using cold cacodylate-buffered aldehyde fixative with procaine hydrochloride. The hearts were immediately dissected free and remained in the fixative a minimum of 2 hours. In most cases, the lateral atrial walls were removed during this period. The tissues were then dehydrated using a series of ascending grades of ethanol; final dehydration of the tissues was achieved via the critical point drying method followed by sputter-coating with goldpalladium.


Author(s):  
Yukiko Sugi

In cultured skeletal muscle cells of chick, one intermediate filament protein, vimentin, is primarily formed and then synthesis of desmin follows. Coexistence of vimentin and desmin has been immunocytochemically confirmed in chick embryonic skeletal musclecells. Immunofluorescent localization of vimentin and desmin has been described in developing myocardial cells of hamster. However, initial localization of desmin and vimentin in early embryonic heart has not been reported in detail. By quick-freeze deep-etch method a loose network of intermediate filaments was revealed to exist surrounding myofibrils. In this report, immunocytochemical localization of desmin and vimentin is visualized in early stages of chick embryonic my ocardium.Chick embryos, Hamburger-Hamilton (H-H) stage 8 to hatch, and 1 day old postnatal chicks were used in this study. For immunofluorescence study, each embryo was fixed with 4% paraformaldehyde and embedded in Epon 812. De-epoxinized with sodium methoxide, semithin sections were stained with primary antibodies (rabbit anti-desmin antibody and anti-vimentin antibody)and secondary antibody (RITC conjugated goat-anti rabbit IgG).


2021 ◽  
pp. 101189
Author(s):  
Alin Khaliduzzaman ◽  
Ayuko Kashimori ◽  
Tetsuhito Suzuki ◽  
Yuichi Ogawa ◽  
Naoshi Kondo

2009 ◽  
Vol 5 (1) ◽  
pp. 374-380 ◽  
Author(s):  
G VARGAS ◽  
R MESONES ◽  
O BRETCANU ◽  
J LOPEZ ◽  
A BOCCACCINI ◽  
...  

2021 ◽  
Vol 9 (2) ◽  
pp. 16
Author(s):  
Bhaval Parmar ◽  
Urja Verma ◽  
Kashmira Khaire ◽  
Dhanush Danes ◽  
Suresh Balakrishnan

A recent study from our lab revealed that the inhibition of cyclooxygenase-2 (COX-2) exclusively reduces the level of PGE2 (Prostaglandin E2) among prostanoids and hampers the normal development of several structures, strikingly the cranial vault, in chick embryos. In order to unearth the mechanism behind the deviant development of cranial features, the expression pattern of various factors that are known to influence cranial neural crest cell (CNCC) migration was checked in chick embryos after inhibiting COX-2 activity using etoricoxib. The compromised level of cell adhesion molecules and their upstream regulators, namely CDH1 (E-cadherin), CDH2 (N-cadherin), MSX1 (Msh homeobox 1), and TGF-β (Transforming growth factor beta), observed in the etoricoxib-treated embryos indicate that COX-2, through its downstream effector PGE2, regulates the expression of these factors perhaps to aid the migration of CNCCs. The histological features and levels of FoxD3 (Forkhead box D3), as well as PCNA (Proliferating cell nuclear antigen), further consolidate the role of COX-2 in the migration and survival of CNCCs in developing embryos. The results of the current study indicate that COX-2 plays a pivotal role in orchestrating craniofacial structures perhaps by modulating CNCC proliferation and migration during the embryonic development of chicks.


Sign in / Sign up

Export Citation Format

Share Document