Catch connective tissue: The connective tissue with adjustable mechanical properties

Echinodermata ◽  
2020 ◽  
pp. 69-73 ◽  
Author(s):  
T. Motokawa
2005 ◽  
Vol 5 ◽  
pp. 564-570
Author(s):  
Simone Vesentini ◽  
Franco M. Montevecchi ◽  
Alberto Redaelli

Theoretical prediction of the mechanical properties of soft tissues usually relies on a top-down approach; that is analysis is gradually refined to observe smaller structures and properties until technical limits are reached. Computer-Assisted Molecular Modeling (CAMM) allows for the reversal of this approach and the performance of bottom-up modeling instead. The wealth of available sequences and structures provides an enormous database for computational efforts to predict structures, simulate docking and folding processes, simulate molecular interactions, and understand them in quantitative energetic terms. Tendons and ligaments can be considered an ideal arena due to their well defined and highly organized architecture which involves not only the main structural constituent, the collagen molecule, but also other important molecular “actors” such as proteoglycans and glycosaminoglycans. In this ideal arena each structure is well organized and recognizable, and using the molecular modeling tool it is possible to evaluate their mutual interactions and to characterize their mechanical function. Knowledge of these relationships can be useful in understanding connective tissue performance as a result of the cooperation and mutual interaction between different biological structures at the nanoscale.


1978 ◽  
Vol 33 (5-6) ◽  
pp. 346-358 ◽  
Author(s):  
H. Wesch ◽  
R. Jonak ◽  
H. Nemetschek-Gansler ◽  
H. Riedl ◽  
Th. Nemetschek

Abstract The content of trace elements in several organs of rats under the influence of D-penicillamine (D-PA) was investigated by the neutronactivation-analysis. It could be shown an diminution of Cu, and Co under D-PA-treatment, the content of Fe, Mn, Rb and Zn was not influenced. The investigat­ ed organs didn’t show any submicroscopic alterations under D-PA. On isolated collagen fibrils of tail tendon was seen a significantly diminuition of E-moduls. In accordance with Siegel the principal effect of D-PA is thought to block the synthesis of functional groups from Schiff-base crosslink precursors but not to inhibit lysyloxidase by loss of Cu-ions of connective tissue. The thermostability of D-PA influenced fibrils is changed in stretched state only and will be due to the lack of crosslink Schiff-bases; where as the shrinking point of not stretched fibrils shows only aging dependent changes.


2005 ◽  
Vol 98 (5) ◽  
pp. 1892-1899 ◽  
Author(s):  
Béla Suki ◽  
Satoru Ito ◽  
Dimitrije Stamenović ◽  
Kenneth R. Lutchen ◽  
Edward P. Ingenito

The biomechanical properties of connective tissues play fundamental roles in how mechanical interactions of the body with its environment produce physical forces at the cellular level. It is now recognized that mechanical interactions between cells and the extracellular matrix (ECM) have major regulatory effects on cellular physiology and cell-cycle kinetics that can lead to the reorganization and remodeling of the ECM. The connective tissues are composed of cells and the ECM, which includes water and a variety of biological macromolecules. The macromolecules that are most important in determining the mechanical properties of these tissues are collagen, elastin, and proteoglycans. Among these macromolecules, the most abundant and perhaps most critical for structural integrity is collagen. In this review, we examine how mechanical forces affect the physiological functioning of the lung parenchyma, with special emphasis on the role of collagen. First, we overview the composition of the connective tissue of the lung and their complex structural organization. We then describe how mechanical properties of the parenchyma arise from its composition as well as from the architectural organization of the connective tissue. We argue that, because collagen is the most important load-bearing component of the parenchymal connective tissue, it is also critical in determining the homeostasis and cellular responses to injury. Finally, we overview the interactions between the parenchymal collagen network and cellular remodeling and speculate how mechanotransduction might contribute to disease propagation and the development of small- and large-scale heterogeneities with implications to impaired lung function in emphysema.


2014 ◽  
Vol 1622 ◽  
pp. 189-195
Author(s):  
Anahita Khanlari ◽  
Tiffany C. Suekama ◽  
Michael S. Detamore ◽  
Stevin H. Gehrke

ABSTRACTChondroitin sulfate (CS) is one of the major glycosaminoglycans (GAGs) present in the connective tissue extracellular matrix (ECM) and is responsible for the regulation of cellular activities as well as providing mechanical support for the surrounding tissue. Due to presence of CS in the natural tissues including cartilage, hydrogels of CS and other GAGs have been widely used in cartilage regeneration. Due to their polyelectrolyte nature, GAG-based hydrogels are brittle and require modifications to overcome the weak mechanical properties. In this work, we showed copolymerization of methacrylated chondroitin sulfate with oligo(ethylene glycol)s improved the crosslink density of the gels from 2 to 20 times depending on the methacrylation degree of CS and length of the crosslinking monomer. Copolymerization of CS with oligo(ethylene glycol) acrylates is a method to design hydrogels with tunable swelling and mechanical properties.


2004 ◽  
Vol 84 (2) ◽  
pp. 649-698 ◽  
Author(s):  
MICHAEL KJÆR

Kjær, Michael. Role of Extracellular Matrix in Adaptation of Tendon and Skeletal Muscle to Mechanical Loading. Physiol Rev 84: 649–698, 2004; 10.1152/physrev.00031.2003.—The extracellular matrix (ECM), and especially the connective tissue with its collagen, links tissues of the body together and plays an important role in the force transmission and tissue structure maintenance especially in tendons, ligaments, bone, and muscle. The ECM turnover is influenced by physical activity, and both collagen synthesis and degrading metalloprotease enzymes increase with mechanical loading. Both transcription and posttranslational modifications, as well as local and systemic release of growth factors, are enhanced following exercise. For tendons, metabolic activity, circulatory responses, and collagen turnover are demonstrated to be more pronounced in humans than hitherto thought. Conversely, inactivity markedly decreases collagen turnover in both tendon and muscle. Chronic loading in the form of physical training leads both to increased collagen turnover as well as, dependent on the type of collagen in question, some degree of net collagen synthesis. These changes will modify the mechanical properties and the viscoelastic characteristics of the tissue, decrease its stress, and likely make it more load resistant. Cross-linking in connective tissue involves an intimate, enzymatical interplay between collagen synthesis and ECM proteoglycan components during growth and maturation and influences the collagen-derived functional properties of the tissue. With aging, glycation contributes to additional cross-linking which modifies tissue stiffness. Physiological signaling pathways from mechanical loading to changes in ECM most likely involve feedback signaling that results in rapid alterations in the mechanical properties of the ECM. In developing skeletal muscle, an important interplay between muscle cells and the ECM is present, and some evidence from adult human muscle suggests common signaling pathways to stimulate contractile and ECM components. Unaccostumed overloading responses suggest an important role of ECM in the adaptation of myofibrillar structures in adult muscle. Development of overuse injury in tendons involve morphological and biochemical changes including altered collagen typing and fibril size, hypervascularization zones, accumulation of nociceptive substances, and impaired collagen degradation activity. Counteracting these phenomena requires adjusted loading rather than absence of loading in the form of immobilization. Full understanding of these physiological processes will provide the physiological basis for understanding of tissue overloading and injury seen in both tendons and muscle with repetitive work and leisure time physical activity.


1959 ◽  
Vol 43 (2) ◽  
pp. 265-283 ◽  
Author(s):  
Bernard J. Rigby ◽  
Nishio Hirai ◽  
John D. Spikes ◽  
Henry Eyring

The load-strain and stress-relaxation behavior of wet rat tail tendon has been examined with respect to the parameters strain, rate of straining, and temperature. It is found that this mechanical behavior is reproducible after resting the tendon for a few minutes after each extension so long as the strain does not exceed about 4 per cent. If this strain is exceeded, the tendon becomes progressively easier to extend but its length still returns to the original value after each extension. Extensions of over 35 per cent can be reached in this way. Temperature has no effect upon the mechanical behavior over the range 0–37°C. Just above this temperature, important changes take place in the mechanical properties of the tendon which may have biological significance. The application of the techniques used here to studies of connective tissue disorders is suggested. Some of the mechanical properties of tendon have been interpreted with a simple model.


Sign in / Sign up

Export Citation Format

Share Document