Artificial Intelligence and Deep Learning for Medical Diagnosis and Treatment

Author(s):  
Jai Prakash Mehta
Author(s):  
Tarik Alafif ◽  
Abdul Muneeim Tehame ◽  
Saleh Bajaba ◽  
Ahmed Barnawi ◽  
Saad Zia

With many successful stories, machine learning (ML) and deep learning (DL) have been widely used in our everyday lives in a number of ways. They have also been instrumental in tackling the outbreak of Coronavirus (COVID-19), which has been happening around the world. The SARS-CoV-2 virus-induced COVID-19 epidemic has spread rapidly across the world, leading to international outbreaks. The COVID-19 fight to curb the spread of the disease involves most states, companies, and scientific research institutions. In this research, we look at the Artificial Intelligence (AI)-based ML and DL methods for COVID-19 diagnosis and treatment. Furthermore, in the battle against COVID-19, we summarize the AI-based ML and DL methods and the available datasets, tools, and performance. This survey offers a detailed overview of the existing state-of-the-art methodologies for ML and DL researchers and the wider health community with descriptions of how ML and DL and data can improve the status of COVID-19, and more studies in order to avoid the outbreak of COVID-19. Details of challenges and future directions are also provided.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 109581-109595 ◽  
Author(s):  
Mohammad Jamshidi ◽  
Ali Lalbakhsh ◽  
Jakub Talla ◽  
Zdenek Peroutka ◽  
Farimah Hadjilooei ◽  
...  

Author(s):  
Federico D’Antoni ◽  
Fabrizio Russo ◽  
Luca Ambrosio ◽  
Luca Vollero ◽  
Gianluca Vadalà ◽  
...  

Chronic Low Back Pain (LBP) is a symptom that may be caused by several diseases, and it is currently the leading cause of disability worldwide. The increased amount of digital images in orthopaedics has led to the development of methods related to artificial intelligence, and to computer vision in particular, which aim to improve diagnosis and treatment of LBP. In this manuscript, we have systematically reviewed the available literature on the use of computer vision in the diagnosis and treatment of LBP. A systematic research of PubMed electronic database was performed. The search strategy was set as the combinations of the following keywords: “Artificial Intelligence”, “Feature Extraction”, “Segmentation”, “Computer Vision”, “Machine Learning”, “Deep Learning”, “Neural Network”, “Low Back Pain”, “Lumbar”. Results: The search returned a total of 558 articles. After careful evaluation of the abstracts, 358 were excluded, whereas 124 papers were excluded after full-text examination, taking the number of eligible articles to 76. The main applications of computer vision in LBP include feature extraction and segmentation, which are usually followed by further tasks. Most recent methods use deep learning models rather than digital image processing techniques. The best performing methods for segmentation of vertebrae, intervertebral discs, spinal canal and lumbar muscles achieve Sørensen–Dice scores greater than 90%, whereas studies focusing on localization and identification of structures collectively showed an accuracy greater than 80%. Future advances in artificial intelligence are expected to increase systems’ autonomy and reliability, thus providing even more effective tools for the diagnosis and treatment of LBP.


2021 ◽  
Author(s):  
Sneha Rao ◽  
Vishwa Mohan Singh ◽  
Siddhivinayak Kulkarni ◽  
Vibhor Saran

Abstract ECG is one of the most important medical scans which is used for diagnosis of various heart related conditions and diseases. One of the most common of these is arrhythmia, which is caused by the irregularity of the heart beats. Artificial Intelligence has had a major impact in the field of vital monitoring and autonomous medical diagnosis. Therefore, a lot of work has demonstrated its effectiveness in arrhythmia detection. In this paper, we propose a method that tries to improve upon the accuracy of such models with the help of a light weight deep learning architecture that utilized 2D Separable CNN with a group of graphical representations of the ECG signals like the STFT, CWT and MFCC. Our model has achieved an accuracy of 97.41 and an F1 score of 88.20 on a processed version of the MIT-BIH dataset and takes on an average 7.93 times less calculations compared to a simple 2D Convolution model.


Author(s):  
Krishna Kumar Joshi ◽  
Neelam Joshi ◽  
Ravi Ray Chaudhari

Nowadays, Artificial intelligence is an important part in everyone's life. It can be derived in two categories named as Machine learning and deep learning. Machine learning is the emerging field of the current era. With the help of the machine learning, we can develop the computers in such a way so that they can learn themselves. There are various types of leaning algorithms used for machine learning. With the help of these algorithms, machines can learn various things and they can behave almost like the human beings. Nowadays, the role of the machine is not limited in some defined fields only; it is playing an important role in almost every field such as education, entertainment, medical diagnosis etc. In this research paper, the basics about machine learning is discussed we have discussed about various learning techniques such as supervised learning, unsupervised learning and reinforcement learning in detail. A small portion is also used to cover some basics about the Convolutional Neural Networks (CNN). Some information about the various languages and APIs, designed and mostly used for Machine Learning and its applications are also provided in this paper.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shaohui Wang ◽  
Ya Hou ◽  
Xuanhao Li ◽  
Xianli Meng ◽  
Yi Zhang ◽  
...  

Rheumatoid arthritis (RA), an autoimmune disease of unknown etiology, is a serious threat to the health of middle-aged and elderly people. Although western medicine, traditional medicine such as traditional Chinese medicine, Tibetan medicine and other ethnic medicine have shown certain advantages in the diagnosis and treatment of RA, there are still some practical shortcomings, such as delayed diagnosis, improper treatment scheme and unclear drug mechanism. At present, the applications of artificial intelligence (AI)-based deep learning and cloud computing has aroused wide attention in the medical and health field, especially in screening potential active ingredients, targets and action pathways of single drugs or prescriptions in traditional medicine and optimizing disease diagnosis and treatment models. Integrated information and analysis of RA patients based on AI and medical big data will unquestionably benefit more RA patients worldwide. In this review, we mainly elaborated the application status and prospect of AI-assisted deep learning and cloud computation-oriented western medicine and traditional medicine on the diagnosis and treatment of RA in different stages. It can be predicted that with the help of AI, more pharmacological mechanisms of effective ethnic drugs against RA will be elucidated and more accurate solutions will be provided for the treatment and diagnosis of RA in the future.


2020 ◽  
Vol 2 ◽  
pp. 58-61 ◽  
Author(s):  
Syed Junaid ◽  
Asad Saeed ◽  
Zeili Yang ◽  
Thomas Micic ◽  
Rajesh Botchu

The advances in deep learning algorithms, exponential computing power, and availability of digital patient data like never before have led to the wave of interest and investment in artificial intelligence in health care. No radiology conference is complete without a substantial dedication to AI. Many radiology departments are keen to get involved but are unsure of where and how to begin. This short article provides a simple road map to aid departments to get involved with the technology, demystify key concepts, and pique an interest in the field. We have broken down the journey into seven steps; problem, team, data, kit, neural network, validation, and governance.


2018 ◽  
Vol 15 (1) ◽  
pp. 6-28 ◽  
Author(s):  
Javier Pérez-Sianes ◽  
Horacio Pérez-Sánchez ◽  
Fernando Díaz

Background: Automated compound testing is currently the de facto standard method for drug screening, but it has not brought the great increase in the number of new drugs that was expected. Computer- aided compounds search, known as Virtual Screening, has shown the benefits to this field as a complement or even alternative to the robotic drug discovery. There are different methods and approaches to address this problem and most of them are often included in one of the main screening strategies. Machine learning, however, has established itself as a virtual screening methodology in its own right and it may grow in popularity with the new trends on artificial intelligence. Objective: This paper will attempt to provide a comprehensive and structured review that collects the most important proposals made so far in this area of research. Particular attention is given to some recent developments carried out in the machine learning field: the deep learning approach, which is pointed out as a future key player in the virtual screening landscape.


Sign in / Sign up

Export Citation Format

Share Document