Transition Amplitude

Author(s):  
Lukong Cornelius Fai
Keyword(s):  
Author(s):  
Michael Kachelriess

After a brief review of the operator approach to quantum mechanics, Feynmans path integral, which expresses a transition amplitude as a sum over all paths, is derived. Adding a linear coupling to an external source J and a damping term to the Lagrangian, the ground-state persistence amplitude is obtained. This quantity serves as the generating functional Z[J] for n-point Green functions which are the main target when studying quantum field theory. Then the harmonic oscillator as an example for a one-dimensional quantum field theory is discussed and the reason why a relativistic quantum theory should be based on quantum fields is explained.


2019 ◽  
Vol 199 ◽  
pp. 01014
Author(s):  
K. Piscicchia ◽  
M. Bazzi ◽  
G. Belloti ◽  
A. M. Bragadireanu ◽  
D. Bosnar ◽  
...  

The AMADEUS experiment at the DAΦNE collider of LNF-INFN deals with the investigation of the at-rest, or low-momentum, K− interactions in light nuclear targets, with the aim to constrain the low energy QCD models in the strangeness sector. The 0 step of the experiment consisted in the reanalysis of the 2004/2005 KLOE data, exploiting K− absorptions in H, 4He, 9Be and 12C, leading to the first invariant mass spectroscopic study with very low momentum (about 100 MeV) in-flight K− captures. With AMADEUS step 1 a dedicated pure Carbon target was implemented in the central region of the KLOE detector, providing a high statistic sample of pure at-rest K− nuclear interaction. The first measurement of the non-resonant transition amplitude $\left| {{A_{{K^ - }n \to \Lambda {\pi ^ - }}}} \right|$ at $\sqrt s = 33\,MeV$ below the K̄N threshold is presented, in relation with the Λ(1405) properties studies. The analysis procedure adopted in the serarch for K− multi-nucleon absorption cross sections and Branching Ratios will be also described.


Atoms ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 3
Author(s):  
Juan M. Monti ◽  
Michele A. Quinto ◽  
Roberto D. Rivarola

A complete form of the post version of the continuum distorted wave (CDW) theory is used to investigate the single ionization of multielectronic atoms by fast bare heavy ion beams. The influence of the non-ionized electrons on the dynamic evolution is included through a residual target potential considered as a non-Coulomb central potential through a GSZ parametric one. Divergences found in the transition amplitude containing the short-range part of the target potential are avoided by considering, in that term exclusively, an eikonal phase instead of the continuum factor as the initial channel distortion function. In this way, we achieve the inclusion of the interaction between the target active electron and the residual target, giving place to a more complete theory. The present analysis is supported by comparisons with existing experimental electron emission spectra and other distorted wave theories.


1972 ◽  
Vol 6 (6) ◽  
pp. 1662-1669 ◽  
Author(s):  
Bengt R. Karlsson

Quantum ◽  
2018 ◽  
Vol 2 ◽  
pp. 44 ◽  
Author(s):  
Stephen P. Jordan ◽  
Hari Krovi ◽  
Keith S. M. Lee ◽  
John Preskill

Recent work has shown that quantum computers can compute scattering probabilities in massive quantum field theories, with a run time that is polynomial in the number of particles, their energy, and the desired precision. Here we study a closely related quantum field-theoretical problem: estimating the vacuum-to-vacuum transition amplitude, in the presence of spacetime-dependent classical sources, for a massive scalar field theory in (1+1) dimensions. We show that this problem is BQP-hard; in other words, its solution enables one to solve any problem that is solvable in polynomial time by a quantum computer. Hence, the vacuum-to-vacuum amplitude cannot be accurately estimated by any efficient classical algorithm, even if the field theory is very weakly coupled, unless BQP=BPP. Furthermore, the corresponding decision problem can be solved by a quantum computer in a time scaling polynomially with the number of bits needed to specify the classical source fields, and this problem is therefore BQP-complete. Our construction can be regarded as an idealized architecture for a universal quantum computer in a laboratory system described by massive phi^4 theory coupled to classical spacetime-dependent sources.


2007 ◽  
Vol 21 (08) ◽  
pp. 475-480 ◽  
Author(s):  
HONG-YI FAN ◽  
TENG-FEI JIANG

For the two-variable Hermite polynomials Hm,n(β,β*) we find its new physical explanation in the dynamics of a linear forced quantum harmonic oscillator (or a dispaced oscillator), i.e. Hm,n(β,β*) can be explained as the time-evolutional transition amplitude from an initial number state |m〉 at t0 to a final state |n〉 at t of the dispaced oscillator. Two new properties of the time-evolutional operator for driven oscillator are revealed.


Author(s):  
Anton Nagl ◽  
Varadarajan Devanathan ◽  
Herbert Überall

Sign in / Sign up

Export Citation Format

Share Document