The effect of type of reinforcement on the pullout force in reinforced soil

2021 ◽  
pp. 353-358
Author(s):  
A.L. Kyulule
2010 ◽  
Vol 143-144 ◽  
pp. 1012-1016
Author(s):  
Yong Liang Lin ◽  
Meng Xi Zhang ◽  
Chun Cai

In conventional reinforced soil structures, the reinforcements are often laid horizontally in the soil. In this paper, a new concept of grid reinforcement with ribbed inclusions is proposed. In the proposed of soil reinforcement, besides conventional grid reinforcements, some vertical and 3D reinforcing rib are also placed in the soil. Pullout tests are necessary in order to study the interaction behavior between soil and geosynthetics in the anchorage zone. Then, a series of pullout tests are conducted and the various parameters studied in this testing program include rib height and grid size of reinforcement. The result shows that the ultimate pullout force of plexiglass with rib is significantly larger than ordinary ones in the same normal stress. Ultimate pullout resistance increased as the increase of the height of tooth, and also is significantly impacted by grid size.


1993 ◽  
Author(s):  
Kara L. Olen ◽  
Richard J. Fragaszy ◽  
Michael R. Purcell ◽  
Kenneth W. Cargill

Author(s):  
Ripon Hore ◽  
Sudipta Chakraborty ◽  
Ayaz Mahmud Shuvon ◽  
Md. Fayjul Bari ◽  
Mehedi A. Ansary

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2743
Author(s):  
Seongnoh Ahn ◽  
Jae-Eun Ryou ◽  
Kwangkuk Ahn ◽  
Changho Lee ◽  
Jun-Dae Lee ◽  
...  

Ground reinforcement is a method used to reduce the damage caused by earthquakes. Usually, cement-based reinforcement methods are used because they are inexpensive and show excellent performance. Recently, however, reinforcement methods using eco-friendly materials have been proposed due to environmental issues. In this study, the cement reinforcement method and the biopolymer reinforcement method using sodium alginate were compared. The dynamic properties of the reinforced ground, including shear modulus and damping ratio, were measured through a resonant-column test. Also, the viscosity of sodium alginate solution, which is a non-Newtonian fluid, was also explored and found to increase with concentration. The maximum shear modulus and minimum damping ratio increased, and the linear range of the shear modulus curve decreased, when cement and sodium alginate solution were mixed. Addition of biopolymer showed similar reinforcing effect in a lesser amount of additive compared to the cement-reinforced ground, but the effect decreased above a certain viscosity because the biopolymer solution was not homogeneously distributed. This was examined through a shear-failure-mode test.


Author(s):  
Sudipta Chakraborty ◽  
Ripon Hore ◽  
Ayaz Mahmud Shuvon ◽  
M. S. Mazhar ◽  
Mehedi A. Ansary

Sign in / Sign up

Export Citation Format

Share Document