scholarly journals Evaluation of Dynamic Properties of Sodium-Alginate-Reinforced Soil Using A Resonant-Column Test

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2743
Author(s):  
Seongnoh Ahn ◽  
Jae-Eun Ryou ◽  
Kwangkuk Ahn ◽  
Changho Lee ◽  
Jun-Dae Lee ◽  
...  

Ground reinforcement is a method used to reduce the damage caused by earthquakes. Usually, cement-based reinforcement methods are used because they are inexpensive and show excellent performance. Recently, however, reinforcement methods using eco-friendly materials have been proposed due to environmental issues. In this study, the cement reinforcement method and the biopolymer reinforcement method using sodium alginate were compared. The dynamic properties of the reinforced ground, including shear modulus and damping ratio, were measured through a resonant-column test. Also, the viscosity of sodium alginate solution, which is a non-Newtonian fluid, was also explored and found to increase with concentration. The maximum shear modulus and minimum damping ratio increased, and the linear range of the shear modulus curve decreased, when cement and sodium alginate solution were mixed. Addition of biopolymer showed similar reinforcing effect in a lesser amount of additive compared to the cement-reinforced ground, but the effect decreased above a certain viscosity because the biopolymer solution was not homogeneously distributed. This was examined through a shear-failure-mode test.

Author(s):  
Xiaobo Yu ◽  
Rui Sun ◽  
Xiaoming Yuan ◽  
Zhuoshi Chen ◽  
Jiuqi Zhang

The shear modulus and damping ratio of frozen soil are thebasic parameters of its dynamic properties and are often testedwith the dynamic triaxial apparatus. However, the resonantcolumn apparatus is more suitable for the testing at the microstrainlevel. A resonant column apparatus was here used toidentify the varying modes with negative temperature of theinitial shear modulus, modulus ratio, and damping ratio of frozensilt. Correction factor curves indicate that the temperaturehas a great effect on the shear modulus and damping ratio offrozen silt. The curves also show that, within the sensitive stage,the temperature significantly affects the modulus and damping.Within the insensitive stage, the modulus and dampingwere insensitive to the temperature. The experimental resultsand analysis given here provide support for improving seismicdesign codes and offer reasonable parameters for seismicresponse analysis in engineering construction in cold regions.


1996 ◽  
Vol 33 (3) ◽  
pp. 510-514 ◽  
Author(s):  
M O Al-Hunaidi ◽  
P A Chen ◽  
J H Rainer ◽  
M Tremblay

The resonant-column test method was used in this study to determine the dynamic shear moduli and damping ratios of frozen and unfrozen soil samples. Naturally frozen soil specimens were obtained in-situ during the winter. A series of tests were carried out on the frozen soil specimens in a cold room at –9°C. The same specimens, after allowing them to thaw, were then tested at room temperature. Test results show that at low-amplitude shear stains the damping ratio of frozen soil specimens is roughly twice that of unfrozen samples. In addition, the dynamic shear modulus for soil specimens while frozen is significantly greater (30 or 50 times) than that of unfrozen specimens. These results provide a basis for explaining an observation that bus-induced vibrations in buildings while the top soil is frozen in winter are about one-half those induced while the soil is not frozen. Key words: resonant-column test, shear modulus, damping ratio, frozen soil, ground vibration.


2013 ◽  
Vol 477-478 ◽  
pp. 439-442
Author(s):  
Xiao Fei Li ◽  
Rui Sun

The shear modulus and damping ratio of soil are important factors for soil layer seismic response analysis, people have done a lot of research. Currently, the method to measure soil shear modulus and damping ratio have bending element test method, resonant column test, dynamic triaxial test and so on. This article describes the British GDS company developed a new resonant column GDS-RCA's main features, technical indicators and working principle, compared the IEM original GZ-1 resonant column test results with GDS-RCA resonant column test results, the compared results are as follows: both damping ratio results in somewhat different, but in 10-6-10-4 low strain shear modulus ratio between the range of test results are consistent, GDS-RCA resonant column testing machine can by low-frequency torsional mode, expand the soil strain measurement extended to 10-6-10-2, and the small strain to large strain test results are in good connection.


2011 ◽  
Vol 243-249 ◽  
pp. 2050-2054 ◽  
Author(s):  
Pei Hsun Tsai ◽  
Sheng Huoo Ni

In this paper the dynamic property (shear modulus and damping ratio) of cement-stabilized soil is studied with using the resonant column test. The amount of cement admixed, the magnitude of confining pressure, and shearing strain amplitude are the parameters considered. Test results show that the maximum shear modulus of cement-stabilized soil increases with increasing confining pressure, the minimum damping ratio decreases with increasing confining pressure. The shear modulus of cement-stabilized soil decreases with increasing shearing strain while the damping ratio increases with increasing shearing strain. In the paper the relationship of shear modulus versus shearing strain is fitted into the Ramberg-Osgood equations using regression analysis.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Dervis Volkan Okur ◽  
Seyfettin Umut Umu

Waste automobile tires are used as additives or replacements instead of traditional materials in civil engineering works. In geotechnical engineering, tires are shredded to certain sizes and mixed with soil, especially used as backfill material behind retaining walls or fill material for roadway embankments. Compared to soil, rubber has high damping capacity and low shear modulus. Therefore, it requires the determination of the dynamic characteristics of rubber/soil mixtures. In this paper, the cyclic behavior of recycled tire rubber and clean sand was studied, considering the effects of the amount and particle size of the rubber and confining stresses. A total of 40 stress-controlled tests were performed on an integrated resonant column and dynamic torsional shear system. The effects of the relative size and proportion of the rubber on the dynamic characteristics of the mixtures are discussed. The dynamic properties, such as the maximum shear modulus, strain-dependent shear modulus, and damping ratio, are examined. For practical purposes, simple empirical relationships were formulated to estimate the maximum shear modulus and the damping ratio. The change in the shear modulus and damping ratio with respect to shear strain with 5% of rubber within the mixture was found to be close to the behavior of clean sand.


2007 ◽  
Vol 44 (2) ◽  
pp. 221-230 ◽  
Author(s):  
Jyant Kumar ◽  
C RI Clayton

A number of resonant column tests were conducted in torsion on aluminium cylindrical bars. By changing the length to diameter ratio of these specimens, the resonant frequency was varied between 52 and 332 Hz. The values of the shear wave velocity (VS) and damping ratio (D) determined from these tests were found to remain acceptable up to a resonant frequency of about 175 Hz. Thereafter, with an increase in the torsional stiffness of the specimen, there was a significant decrease in VS of up to 32.2%, corresponding to a resonant frequency of 332 Hz, and a considerable increase in the damping was noticed. An apparent increase in the mass polar moment of inertia of the driving mechanism was also observed at a greater resonant frequency. The study reveals that, even for a stiff specimen, it is possible using the resonant column tests to accurately determine the dynamic properties of the specimen, provided that the length to diameter ratio of the specimen is increased so that the resonant frequency remains smaller than 175 Hz.Key words: damping, dynamic testing, resonant column test, resonant frequency, shear modulus.


2014 ◽  
Vol 535 ◽  
pp. 764-767
Author(s):  
Qian Feng ◽  
Heng Li ◽  
Yi Zhang

In order to obtain the dynamic response characteristics of soil parameters, dynamic triaxial test is a commonly used method, but the project generally use the resonant column test instead. We selected a typical clay in Wuhan were carried out dynamic triaxial and resonant column test, get the relationship of the dynamic shear modulus ratio and dynamic strain under different dynamic stress and dynamic relationship with the dynamic strain damping ratio, respectively. Comparative analysis showed that the resonant column test obtained smaller results than the dynamic triaxial test.


Sign in / Sign up

Export Citation Format

Share Document