Fire resistance of axially restrained and partially unprotected Ultra Shallow Floor Beams (USFB®) and DELTABEAM® composite beams

2017 ◽  
pp. 81-90
Author(s):  
C. Maraveas ◽  
Z. Fasoulakis ◽  
K.D. Tsavdaridis
2020 ◽  
Vol 92 (6) ◽  
pp. 59-65
Author(s):  
G.P. TONKIH ◽  
◽  
D.A. CHESNOKOV ◽  
◽  

Most of Russian research about composite structure fire resistance are dedicated to the composite slab behavior. The composite beams fire resistance had been never investigated in enough volume: the temperature evaluation within the scope of the actual Russian design codes leads to the significant reduction in the shear connection strength. Meanwhile, there no correlation between the strength decreasing and type of the shear connection. The article provides an overview of the relevant researches and offers some approaches which could take into account bearing capacity reduction of the shear connectors within composite structures design.


2020 ◽  
Vol 12 (20) ◽  
pp. 8328 ◽  
Author(s):  
Tomas Kinderis ◽  
Mindaugas Daukšys ◽  
Jūratė Mockienė

Over the past decade, several types of composite slim floor constructions have been used in multi-storey buildings in Lithuania. In order to study the efficiency of composite beam application in steel-framed multi-storey buildings, Thorbeam (A1), Deltabeam (A2), slim floor beam (A3) and asymmetric slim floor beam (A4) were chosen and evaluated according to nine assessment criteria (beam cost (K1), initial preparation on site (K2), installation time (K3), complexity of installation technology (K4), labour costs (K5), fire resistance (K6), load bearing capacity (K7), beam versatility (K8), and availability of beams (K9)). First, the significance of the rating criteria was selected and the order of the ranking criteria was obtained (K1˃K7˃K3˃K6˃K4˃K5˃K2˃K8˃K9) by means of a survey questionnaire. Second, the beams were ranked according to the points given by the questionnaire respondents as follows: 160 points were given to A2, 144 points to A1, 129 points to A4, and 111 points to A3. Deltabeam is considered to be the most rational alternative of the four beams compared. Calculations done using the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) analysis method revealed that composite beam A2 was the best slim floor structure alternative for an eight-storey high-rise commercial residential building frame, A1 ranked second, A4 ranked third, and A3 ranked fourth. In addition, the four composite beams were compared to a reinforced concrete beam (A5) according to three assessment criteria (beam cost including installation (C1), beam self-weight (C2) and fire resistance (C3)). Deltabeam was found to be efficient for use as a slim floor structure in a multi-story building due to having the lowest cost, including installation, and self-weight, and the highest fire resistance compared to other composite beams studied. Although Deltabeams are 1.4 times more expensive than reinforced concrete beams, including installation costs, they save about 2.5% of the building’s height compared to reinforced concrete beams.


2020 ◽  
Vol 20 (5) ◽  
pp. 83-89
Author(s):  
Jaekwon Ahn ◽  
Inhwan Yeo ◽  
Gyuhwan Cho ◽  
Kyujae Hwang

In this study, the fire resistance of steel composite beams typically used in building structures was investigated through standard fire and loading tests. For the tests, fire-exposure conditions depending on the steel section shape and load ratio applied to the beams were considered as the test parameters. Based on the test results, the applicability of fire design methods for composite beams recommended in current domestic and overseas fire design codes was analyzed. The results indicate that the current temperature-based design method and reduced flexural capacity method specified by the American Institute of Steel Construction may lead to the conservative fire design of steel composite beams owing to the underestimation of the effects of the fire-exposure conditions and load ratios.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Junli Lyu ◽  
Qichao Chen ◽  
Huizhong Xue ◽  
Yongyuan Cai ◽  
Jingjing Lyu ◽  
...  

To investigate the fire resistance of composite beams with restrained superposed slabs, three specimens were tested under uniformly distributed loads in a furnace. The effects of the thickness of the postcast top layer in superposed slabs and the spacing of shear studs on the structural behaviours of composite beams under fire were further examined. During the tests, the temperature distributions of the superposed slabs and steel beams as well as the displacements at their key positions were recorded and analysed. It was found that the temperature of the concrete superposed slabs decreased long their heights from the bottom. The most drastic change of the temperature along the slab cross section was found in the region with a distance of 40 mm to the slab bottom. The concrete superposed slabs could impose restraints to the steel beams due to their incompatible deformations. Cracks were developed on the top surfaces of the specimens and the superposing interfaces between the precast slabs and postcast top layers were not broken. Through the comparisons of different specimens, the spacing of shear studs could have a significant effect on the fire resistance of composite beams, especially for their deformation recovery capacities. In contrast, the effect of the thickness of the postcast top layers was negligible. ABAQUS was employed to simulate the temperature fields and deformation behaviours of composite beam specimens based on a sequenced thermomechanical coupling analysis. The numerical results agreed well with the experiment data, which validated the developed numerical model.


Author(s):  
Akio KODAIRA ◽  
Hideo FUJINAKA ◽  
Hirokazu OHASHI ◽  
Toshihiko NISHIMURA

Sign in / Sign up

Export Citation Format

Share Document